
Manuel Kutschka (Autor)
Robustness Concepts for Knapsack and Network

Design Problems under Data Uncertainty
Gamma-, Multi-band, Submodular, and Recoverable

Robustness

https://cuvillier.de/de/shop/publications/6558

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen,
Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

INTRODUCTION

Our life is affected by countless complex interdependent processes forming the backbone
of economy including production, trading, logistics, distribution, and communication.
Oftentimes, thousands, millions or even more decisions must be taken into account to
plan and operate these processes.

Mathematical optimization strives for providing theory, models, and methods to
tackle these problems and obtain relevant solutions in practice. As a sub-discipline of
mathematics, mathematical optimization investigates the (hidden) problem structure to
identify and exploit reoccurring (sub)structures and develop tailor-made strategies.

An example of reoccurring structures are networks. A network describes the dependen-
cies between entities, e. g., logistics networks describe the places from which and where
to commodities are sent, energy networks characterize the supply of energy, or telecom-
munication networks specify the possible ways of information exchange. The problem to
plan a network, i. e., determine its layout and the rules how it can be used later on, is
called the capacitated network design problem (NDP) in mathematical optimization.

Another crucial aspect are scarce resources and the resulting challenging question of
prioritizing their usage. For example, the (scarce) loading capacity of a delivery truck
must be utilized in the best way in logistics, the limited monetary budget must be
managed in finance, or the available bandwidth of an optical fiber must be shared among
several optical data signals in telecommunication. Mathematically, this leads to the
so-called knapsack problem (KP).

The understanding of problems such as the NDP or the KP allows a more accurate
mathematical modeling of the underlying real-world problem. However, the mathemati-
cal model is always a simplification; oftentimes a rather rough one. In particular, the
temporal dynamics and uncertainties of real-life processes are hard to take into account,
e. g., travel times are not constant but subject to delays like traffic jams in practice, the
food production depends on future weather conditions, or telecommunication demands
fluctuate significantly by the daytime with peaks during certain hours of the day and
lows during the night.

Mathematical optimization offers several paradigms to incorporate uncertainty into the
mathematical framework. Robust optimization is one of these. Here, the data uncertainty
is modeled implicitly by a so-called uncertainty set. The robust optimization problem
asks to find an optimal solution that is feasible for any possible data realization in this un-
certainty set. In particular, robust linear optimization offers several advantages over other

1

Introduction

approaches. The definition of an uncertainty set does not rely on the knowledge of proba-
bility distributions and is thus often better suited to applied problems where only a finite
discrete set of historical data is available, if any. In addition, robust solutions are feasible
for all realizations in the uncertainty set by definition. Further, the complexity of robust
linear programs does not increase compared to the original non-robust linear program
under mild conditions. Instead, there often exist compact reformulations, i. e., formu-
lations that are at most polynomially larger than the original non-robust formulations.
Thus, robust linear optimization problems are more computationally tractable than other
mathematical optimization problems applying different paradigms to handle uncertainties.

In this thesis, we consider robust integer linear optimization problems. In particular,
we consider four different robustness concepts and the associated uncertainty sets. For
each concept, we investigate the corresponding robust KP presenting integer linear
programming formulations, results on the polyhedral structure of the solution sets, and
algorithms to solve the occurring separation problems or the robust KP themselves.
Moreover, we study the corresponding robust NDP problem for two of the concepts,
also presenting several integer linear programming formulations, polyhedral insights, and
(separation) algorithms to solve the (separation) problems.
Our theoretical investigations are completed by two extensive computational studies:

one for the recoverable robust KP, the other for the Γ-robust NDP. The latter uses
real-life uncertain data from an application in telecommunication and is based on our
work with the German ROBUKOM project in cooperation with Nokia Siemens Networks
GmbH & Co. KG.

Contributions. Some results are partially based on joint work as common in the area
of applied mathematical optimization. Whenever this is the case, we state explicitly our
coauthors and possible prior published publications of our joint work in the beginning of
the corresponding chapters.

The main contributions of the thesis are the following.

• The introduction and study of the concept of submodular robustness.
• A detailed investigation of the recoverable robust KP. In particular with a Γ-robust
scenario set and the k-removal recovery rule.

• A detailed investigation of the submodular robust KP introducing the classes of
submodular robust (1, k)-configuration and weight inequalities.

• A study of the structure of covers and their extendability for each considered robust
KP.

• A detailed investigation of the Γ-robust NDP including new classes of valid and
facet-defining inequalities (e. g., Γ-robust cutset inequalities, Γ-robust envelope

2

inequalities, Γ-robust arc residual capacity inequalities, and Γ-robust metric in-
equalities) and algorithms solving the corresponding separation problems as well as
the Γ-robust NDP problem itself.

• A first-time investigation of the multi-band robust NDP including mixed integer
linear programming formulations, polyhedral studies yielding new classes of valid
inequalities (multi-band robust cutset inequalities and multi-band robust metric
inequalities), and algorithms to solve the corresponding separation problems. In
particular, we point out by examples how results of the Γ-robust NDP can be
generalized to the multi-band robust setting.

• Representative extensive computational studies for two recoverable robust knapsack
variants and one robust network design problem (the latter with application to
telecommunications).

Outline. This thesis is structured into three parts.

In Part I - Concepts, we introduce the relevant mathematical methodology, provide a
survey on related work, and introduce the objects of research for this thesis. Therefore,
we first recap mathematical requirements focusing on mathematical optimization and
introducing the classic knapsack and capacitated network design problems in Chapter 1.
A brief primer on relevant applications in telecommunications is given at the end of
the same chapter. In Chapter 2, we present a detailed survey on literature related to
mathematical optimization under data uncertainty and in particular robust optimization.
Next in Chapter 3, we introduce the four robustness concepts which are our main focus of
investigation in this thesis: Γ-robustness, multi-band robustness, submodular robustness,
and recoverable robustness. Moreover, we address the evaluation of robustness discussing
several alternative approaches.

In Part II - Robust Knapsack Problems, we consider the robust counterpart of the clas-
sic knapsack problem for each of the four robustness concepts. For each resulting robust
knapsack problem, we present mathematical formulations, study the corresponding poly-
hedral solution sets identifying strong classes of valid inequalities, and develop algorithms
solving the occurring separation problems as well as the robust knapsack problem itself.
Following this structure of investigation, we consider the Γ-robust knapsack problem in
Chapter 4, the more general multi-band robust knapsack problem in Chapter 5, and the
submodular robust knapsack problem in Chapter 6 which generalizes the multi-band
robust knapsack problem even further. In Chapter 7, we consider the recoverable robust
knapsack problem which is an integrated two-stage problem. Two special cases are
of particular interest for us whereof one generalizes the one-stage Γ-robust knapsack
problem. We conclude this part of the thesis in Chapter 8 reporting on the results of
extensive computational studies we carried out on recoverable robust knapsack problems.
Therefore, we focus on the rather general recoverable robust knapsack problem evaluating

3

Introduction

the effect of the robustness parameters, the strength of the derived valid inequalities and
finally the overall performance in a cut-and-branch approach to solve this problem.

Part III - Robust Network Design Problems is structured similarly to Part II. Here,
we consider the robust counterpart of the classic (capacitated) network design problem
for selected robustness concepts. We primarily focus on the Γ-robust network design
problem and provide several mathematical formulations for this problem, investigate
the corresponding polyhedral structure, derive several classes of valid inequalities, and
algorithms. Our investigation is described in great detail in Chapter 9. Afterwards,
we consider the more general multi-band robust network design problem in Chapter 10
pointing out how results for the Γ-robust network design problem are generalized to
the multi-band robust setting. In Chapter 11, we describe the results of computational
studies on robust network design problems and in particular the Γ-robust design of
telecommunication networks. We experimentally compare its different formulations, the
derived classes of valid inequalities, separation algorithms, and algorithms to solve the
Γ-robust network design problem itself. For our experiments, we use historical real-life
traffic measurements to define the data uncertainty.

Finally, we give concluding remarks to the contributions of this thesis and discuss
potential future research directions.

4

PART ONE

CONCEPTS

5

CHAPTER ONE

MATHEMATICAL PRELIMINARIES

The first chapter of this thesis gives a brief survey of the mathematical prerequisites
and thereby introduces the reader to the used notation. Furthermore, we present two
important optimization problems: the knapsack problem and the capacitated network
design problem. In later parts of this thesis we will consider variants of both problems
where the input data is subject to some random uncertainty. In this chapter we introduce
both problems in their classic deterministic settings, reporting on related work, important
results, and polyhedral insights to their solution sets. The last section of this chapter is a
primer to the telecommunications application area. There, we give a short introduction to
the structure and operation of telecommunication networks and the related mathematical
optimization challenges.

1.1 Basics

In the following, we introduce our notation while reminding the reader of some basics of
(integer) linear optimization and polyhedral combinatorics. We assume that most results
are well-known and therefore give only a brief introduction without making the claim to
be complete. For further reading, we refer to some well-established monographs below.

An introduction to graphs, networks, flows, and related algorithms is given in the
excellent book by Ahuja et al. [10]. The standard book about complexity theory is
written by Garey and Johnson [72]. A well-written introduction to linear optimization
with various examples is given by Chvatal [53]. A more formal and more recent survey
on linear programming can be found in Dantzig [61].

Algorithmic combinatorial optimization is described by Grötschel et al. [76]. The books
by Schrijver [143], Nemhauser and Wolsey [126], and Wolsey [159] consider the theory
of integer programming, combinatorial optimization and the related polyhedral theory.
The three-volume encyclopedic book by Schrijver [144] gives an excellent survey on
state-of-the-art combinatorial optimization theory and techniques referencing thousands
of original work. A good survey of the algorithmic aspects of solving mixed integer linear
programs and experimental results are described in detail by Achterberg [6].

7

1 Mathematical preliminaries

Linear algebra. We denote by Z, Q, and R, the sets of integer, rational, and real numbers,
respectively. The set of positive natural numbers is denoted by N. Let K ∈ {Z,Q,R}.
Then, K>0, K≥0, K≤0, and K<0 denotes the positive, nonnegative, nonpositive, and
negative subset of K, respectively. For two arbitrary sets A and B, let A ∪B denote the
union, A∩B the intersection, and A�B := (A∪B) \ (A∩B) the symmetric difference
of A and B. The power set of A, i. e., the set of all subsets of A, is denoted by 2A. For a
function x : A → R, we define the notation x(A) :=

∑
a∈A x(a). A function f : A → R

is called submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) holds for all S, T ⊆ A. A
function f : A× A → R≥0 is called metric if the following three conditions hold for all
a, b, c ∈ A: (i) f(a, a) = 0, (ii) f(a, b) = f(b, a), and f(a, b) ≤ f(a, c) + f(c, b).

For x ∈ R\Z, the largest integer number smaller than x is denoted by
x�. Analogously,
the smallest integer number larger than x is denoted by �x
. For x ∈ Z, we define

x� = �x
 = x. Further, we define frac(x) := x − (�x
 − 1) as the fractional part of
x ∈ R. Note, frac(x) = 1 if x ∈ Z.

Let v ∈ Rn, M ∈ Rm×n be a vector and a matrix, respectively. If not stated differently,
all vectors are column vectors and v� denotes the transposed vector of v. Further, vi is
the i-th component or entry of v. Analogously, Mi· is the i-th row, M·j the j-th column,
and Mij the entry in row i and column j of M . Let ei denote the i-th unit vector, i. e.,
the vector whose i-th entry is 1 and all others are 0. Let x1, x2, . . . , xt ∈ Rn. A vector
x ∈ Rn is a linear (affine, conic, or convex) combination of x1, . . . , xt if there exists a
λ ∈ Rn so that x =

∑t
i=1 λixi (and

∑t
i=1 λi = 1, λ ≥ 0, or

∑t
i=1 λi = 1 and λ ≥ 0,

respectively). Considering one type of combination, if λ = 0 is the only solution, we
call x linearly, affinely, conic, or convex independent of x1, . . . , xt, respectively. Let
X ⊆ Rn. Then lin(X), aff(X), cone(X), or conv(X), denotes the linear, affine, conic,
or convex hull , i. e., the set of all linear, affine, conic, or convex combinations of vectors
in X, respectively. The dimension dim(X) is defined as the maximum number of affinely
independent vectors in X minus 1.

Let E be a finite set, and I ⊂ 2E. Then, the pair (E, I) is called an independence
system if ∅ ∈ I and A ∈ I ⇒ B ∈ I for all B ⊆ A ∈ I. The elements of I are called
independent sets.

Complexity theory. Next, we provide a rather informal introduction to mathematical
optimization and complexity theory. Based on Garey and Johnson [72] we define a
problem as a question to be answered. Usually the answer depends on some input
parameters. A (problem) instance of a problem is an assignment of values to all its
input parameters. If only “yes” and “no” are feasible answers, we call the problem a
decision problem. An optimization problem is a problem whose answer is the minimum
or maximum value of a given objective function. For each optimization problem there
exists a corresponding decision problem asking if the objective function is less than or
greater than a given value (depending on if the optimization problem is a minimization
or maximization problem).

An algorithm is a procedure which answers the problem for all problem instances. It
solves the problem if the answers given are always feasible to the problem.

8

1.1 Basics

In this thesis, we assume all problem instances are coded binary and the model of
computation is a deterministic one-tape Turing machine, see Garey and Johnson [72] for
details. The (time) complexity of an algorithm is the number of elementary operations
executed to solve a problem instance. The big-O notation is used to denote the complexity
of an algorithm or problem depending on the size n of its input data. Then O(f(n))
means there exist functions f, g : Z≥0 → Z≥0 with limn→∞

f(n)
g(n)

> 1 and a scalar a ∈ R≥0

such that (there exists an algorithm such that) the number of elementary operations
to solve the given instance of size n is bounded by the term a · f(n) + g(n). Notice
that the scalar a and the dominated term g(n) are usually dropped in the corresponding
big-O notation. If f(n) is a polynomial, we say the algorithm or problem has polynomial
(time) complexity. In addition to the time complexity, we can also count the elementary
read and write operations accessing the information storage. Analogously, this yields the
so-called memory or size complexity.

We define P as the class of all decision problems for which a polynomial time algorithm
exists. The class NP consists of all decision problems for which a “yes“-instance can
be verified in polynomial time by another algorithm. It holds P ⊆ NP . The class
NP-hard consists of all problems as hard as the hardest problems in NP . Although
the misleading name, a NP-hard problem may not be in NP . If a problem is both in
NP and NP-hard, then it is called NP-complete. We define the class co-NP as all
decision problems for which a “no“-instance can be verified with polynomial complexity.
It holds P ⊆ co-NP . Analogously, we define the complexity classes co-NP-hard and
co-NP-complete. An algorithm has pseudo-polynomial complexity if its complexity is
polynomial w.r.t. numeric value of the input and not its binary encoding. A NP-hard
problem with pseudo-polynomial complexity is called weakly NP-hard. A problem in
NP-hard is called strongly NP-hard if it is proven that no pseudo-polynomial algorithm
solving this problem exists (unless P = NP). There exist polynomial time algorithms to
NP-hard optimization problems if and only if P = NP holds which is one famous open
question in complexity theory; cf. Cook [56]. An extensive list of classical combinatorial
problems known to be NP-complete is given by Garey and Johnson [72]. The definition
of (fully) polynomial approximation schemes can also be found therein.

Graph theory. An (undirected) graph is defined by a set of nodes V , a set of edges
E ⊂ V × V and an incidence function ψ : E → V 2 relating each edge e = {i, j} ∈ E
to its end nodes i, j ∈ V . A graph is denoted by G = (V,E, ψ) or G = (V,E) for short
(in which case we assume that the omitted incidence function ψ is implicitly defined
by the set of edges). Let G = (V,E) be a graph with n nodes, U ⊂ V , and F ⊂ E.
Then, G′ = (U, F) is the subgraph of G with node set U and edge set F . A subgraph
G′ = (U, F) is called a tree if it is connected and |F | = |U |−1; if U = V , then G′ is called
a spanning tree of G. The subset of edge P = (v1v2, v2v3, . . . , vi−1vi) ⊂ E is called a path
if vj �= vk for all j, k ∈ {1, . . . , i}, j �= k. A cycle C is defined as C := P ∪ {viv1} ⊂ E.
A subset S ⊂ V of the nodes partitions the graph two parts S and V \ S and is called
cut. The subset of edges with one end node in S and the other in V \ S is denoted by
δ(S) and called cutset .

9

1 Mathematical preliminaries

P (A,b)

facet-defining

facet

valid

Figure 1.1: Example of a polytope P (A, b) with a valid inequality, a facet-defining in-
equality, and a facet.

In addition to undirected graphs, there exist directed graphs or digraphs for short. A
digraph D is analogously defined as the triple (V,A, ψ) of a set of nodes V , a set A of
directed arcs, and an incidence function ψ. An undirected graph G = (V,E) can be
directed by an orientation o : E → V × V assigning each edge {i, j} ∈ E to either the
arc (i, j) or the arc (j, i).

Notice, for simplicity, we also write ij for an edge or an arc if it is unambiguous in the
current context.

Polyhedral theory. Let A ∈ Rm×n, b ∈ Rm, J = {1, 2, . . . ,m}, and Ax ≤ b a system
of linear inequalities. Then, the set P (A, b) := {x ∈ Rn : Ax ≤ b} is called a (convex)
polyhedron. W. l. o. g. we assume P (a, b) to be full-dimensional in the following definitions.
If P (A, b) is bounded, it is called a polytope. The convex hull of all integer lattice points of
a polyhedron, conv(P (A, b)∩Zn), is called integer hull and a polyhedron itself. A vector
x ∈ P (A, b) is called an extreme point if it is not a convex combination of any vectors in
P (A, b). A set F is called a face of P (A, b) if F := {x ∈ P (A, b) : ∃J ′ ⊂ J,AJ ′·x = bJ ′}
holds. A face F �∈ {P (A, b), ∅} is called proper. A proper face F of P (A, b) which is not a
subset of another face is called facet , i. e., it holds dim(F) = dim(P (A, b))−1. For v ∈ Rn

and w ∈ R, we call an inequality v�x ≤ w valid for P (A, b) if P (A, b)∩P (v, w) = P (A, b)
holds. A valid inequality is called facet-defining for P (A, b) if there exist a facet F of
P (A, b) so that F ⊆ {

x ∈ Rn : v�x = w
} �= ∅. Figure 1.1 illustrates a polytope, a valid

inequality, a facet-defining inequality, and a facet.

Let Q(A, b) :=

{
x1 ∈ Rn1 , x2 ∈ Rn2 : A

(
x1
x2

)
≤ b

}
. Then we define its projection onto

the space of x1 by projx1 Q(A, b) :=

{
x1 ∈ Rn1 : ∃x2 ∈ Rn2 so thatA

(
x1
x2

)
≤ b

}
. Let

a1 ∈ Rn1 , b ∈ R, and a1
�x1 ≤ b for x1 ∈ Rn1 . Then, we call

(
a1
a2

)�(
x1
x2

)
≤ b for

x2 ∈ Rn2 the lifted inequality to the space of the x1- and x2-variables. For x ≥ 0, an
inequality v�x ≤ w dominates another inequality v′�x ≤ w� if there exists a λ ∈ R>0 so

10

that λv′ ≤ v and λw′ ≥ w holds. The case x ≤ 0 is analog.

1.1 Basics

P (A,b)

x∗

κ
� x

min

(a) LP

P (A,b)

conv(P (A,b)∩Zn)

x∗ILP
x∗

κ
� x

min

(b) LP with integer hull as ILP

Figure 1.2: Example of an LP and the ILP defined by the integer hull conv(P (A, b)∩Zn).
The optimal LP solution x∗ and integer solution x∗ILP are shown.

Linear programming. Let A ∈ Rm×n, b ∈ Rm, κ ∈ Rn. Then, we call the optimization
problem to maximize a linear function over the polyhedron P (A, b) a linear programming
(LP) problem (in standard form). It can be written as

max κ�x (1.1)

s. t.Ax ≤ b. (1.2)

A vector x ∈ Rn satisfying the conditions of LP (1.1) is called feasible; a feasible vector
x∗ minimizing the objective value κ�x∗ is called optimal. If there exists an optimal
solution, then there exists an optimal solution which is an extreme point of P (A, b). In
Figure 1.2(a), an LP and its optimal solution x∗ is visualized.
Given an LP in standard form (1.1), we call the associated LP

min b�y (1.3)

s. t.A�y = κ (1.4)

y ≥ 0 (1.5)

its dual LP. The original LP (1.1) is called the primal LP. Note, the dual LP of the dual
LP (1.3) is again the primal LP (1.1).

Theorem 1.1 (Duality of linear programming). Let A ∈ Rm×n, b ∈ Rm, κ ∈ Rn. If
there exist feasible solutions x̃ and ỹ of the primal LP max

{
κ�x : Ax ≤ b

}
and the dual

LP min
{
b�y : A�y = κ, y ≥ 0}, respectively, then there exist finite optimal solutions

x∗ and y∗ so that κ�x∗ = b�y∗ holds.

Notice that the standard form of an LP is no restriction of generality: there exist trans-
formations between maximization and minimization problems, equality and inequality
constraints, and unbounded and bounded/nonnegative variables.

11

1 Mathematical preliminaries

In 1951, Dantzig [59] developed the simplex algorithm, an iterative algorithm which
starts with a feasible solution (corresponding to an extreme point of the polytope) and
improves to another feasible solution (also corresponding to an extreme point) which
yields a better objective value until an optimal solution is reached. Unfortunately,
the simplex algorithm has exponential worst-case complexity since exponentially-many
extreme points have to be evaluated in the worst-case (using known pivot rules); cf. Klee
and Minty [95]. However, later it has been proven that its complexity is polynomial
on average; cf. Borgwardt [43] and Spielman and Teng [148]. Another approach to is
the ellipsoid method which has polynomial complexity but is useless in practice due to
numerical instabilities; cf. Khachiyan [93] and Grötschel et al. [75]. A different polynomial
algorithm to solve an LP has been introduced by Karmarkar [90] and is called interior
point method or barrier algorithm.

(Mixed) integer linear programming. Given an LP in standard form (1.1) and with
rational input data. If we restrict its feasible solutions to integer vectors only, we obtain
an integer linear programming (ILP) problem. It reads

max κ�x (1.6)

s. t.Ax ≤ b. (1.7)

x ∈ Zn. (1.8)

By relaxing the integrality constraint x ∈ Zn, we obtain the linear (programming) re-
laxation of ILP (1.6). In Figure 1.2(b), an LP and its integer hull are visualized. In
addition, the optimal LP solution x∗ and integer solution x∗ILP are shown. Note, if only a
subset of the variables is restricted to integrality, a mixed integer linear program (MILP)
is obtained. The following algorithmic approaches to ILPs are w. l. o. g. also applicable to
MILPs. In contrast to LPs, solving ILPs is known to be strongly NP-hard; see Kannan
and Monma [88].

In the 1960s, Land and Doig [108] and Dakin [57] introduced the branch-and-bound
algorithm to solve ILPs. It is an (implicitly) enumerative algorithm following the
divide-and-conquer principle used in computer science.
In this algorithm, only the LP relaxation of an ILP is solved, e. g., by using the simplex

algorithm. If the LP relaxation is unbounded or has no solution, the ILP is as well or
has not one either, respectively. If the LP relaxation has an integer optimal solution,
then this solution is also optimal for the original ILP. If the optimal solution vector
x∗ of the LP relaxation has a fractional valued entry x∗i , it is not feasible for the ILP.
This fractionality is removed by splitting the LP relaxation into two new subproblems
where the constraint xi ≤
x∗i � is added to one of them and the constraint xi ≥ �x∗i
 to
the other. This split step is called branching. Notice, the union of the set of feasible
solutions of both newly created subproblems contains all feasible integer points of the
solution set of the original ILP. Figure 1.3(a) illustrates the branching geometrically.
After branching, each subproblem is solved individually. If the solution vector of a
subproblem has again fractional entries, the algorithm is recursively repeated for this

12

1.1 Basics

x∗

xi≥�x∗i

xi≤
x∗i �

(a) branching

cu
t

x∗

(b) cutting plane

Figure 1.3: Example of branching and cutting in a branch-and-bound or branch-and-cut
algorithm, respectively.

subproblem. By succeeding branchings, the so-called (binary) branch-and-bound tree is
built. Note, the LP relaxation of the original problem is located at the root node of this
tree. Its leaf nodes correspond to subproblems which are either infeasible (i.e. have no
solution) or have an integer optimal solution.

Clearly, the branch-and-bound tree grows exponentially. Hence, the explicit enumera-
tion of all tree nodes should be avoided. A way to do so is motivated by the following
observations: on the one hand, every integer feasible solution found at any node of the
branch-and-bound tree is feasible to the original ILP. Thus, its objective value yields
an global lower bound (for a maximization problem) on the actual possible currently
unknown objective value of the ILP. On the other hand, at each node, the objective value
of an optimal solution of the LP relaxation is a local upper bound on the objective value
of an optimal solution of the corresponding ILP at the same node. Hence, whenever
the local upper bound is lower than the currently best known global upper bound while
running the branch-and-bound algorithm, the node corresponding to the local upper
bound cannot yield any better integer solution than the one corresponding to the current
global upper bound. Thus, this node and its subproblem can be ignore. No branching
takes places. It can be removed from the branch-and-bound tree; the node and its
potential subtree are called fathomed. This overall principle is known as bounding.

Another approach to reduce the number of actual solved branch-and-bound nodes is
to tighten the LP relaxations by adding additional inequalities which are valid for the
ILP but violated for the actual fractional solution of the LP relaxation. Geometrically,
these inequalities cut-off some region of the polyhedron associated with the LP relaxation
including the fractional LP solution (but no integer feasible solution of the ILP). Hence,
these inequalities are called cutting planes or cuts for short. Figure 1.3(b) shows an
example of a cut. The problem to determine a cut given a fractional LP solution or proof
that none exist, is called separation problem, the procedure itself we call separation. In
1981, Grötschel et al. [75] have shown that optimization and separation are polynomially
equivalent, i. e., an optimization problem can be solved efficiently if and only if the

13

1 Mathematical preliminaries

y

x

b

y

M
IR

cu
t

Figure 1.4: Example of a MIR cut in two dimensions.

separation problem to remove infeasible solutions can be solved efficiently. Numerous
classes of cutting planes are known. Some of then are general cutting planes exploiting
the structure of the coefficient matrix A, the right hand side vector b, or the variable
ranges. Others are problem-specific cuts which are only valid for the specific polyhedral
structure of selected combinatorial problems. Chvátal-Gomory cuts [73, 74] or mixed
integer rounding (MIR) cuts [126] (for MILPs) are examples for the first type of cuts,
cover inequalities to the knapsack problem for the latter [18, 80, 158].
We will use MIR to derive valid inequalities for several polyhedra in this thesis. Let us

now consider the two-dimensional MIR inequalities as an example.

Lemma 1.2 (Wolsey [159]). Let Q = {(x, y) ∈ R× Z : x+ y ≥ b, x ≥ 0}. Then, the
mixed integer rounding inequality

x+ ry ≥ r �b
 (1.9)

with r := b−
b� is valid for Q.

In Figure 1.1 a mixed integer set and MIR cut is shown.

By integrating the separation of cutting planes into the branch-and-bound algorithm,
we obtain the so-called branch-and-cut algorithm. Here, cuts are separated, added to the
LP relaxation, and the extended LP is resolved. A problem is only branched into two
subproblems if no violated cut has been found or another technically motivated abort
criterion for the implemented separation algorithm is met. If the cutting planes are only
applied at the root node, the resulting algorithm is called cut-and-branch. Achterberg
[6] presents an excellent survey on the state-of-the-art algorithms and implementations
of branch-and-cut algorithms.

1.2 The knapsack problem

One of the most fundamental problems in mathematical optimization is the well-known
knapsack problem. In its general form the (binary or 0-1) knapsack problem asks to select

14

1.2 The knapsack problem

a subset of valuable items such that their total value is maximized while they have to
“fit into” the knapsack, i. e., their total weight must not exceed the given capacity of the
knapsack. Although its apparent clearness, the knapsack problem turns out to be a hard
problem, in fact weakly co-NP-hard. Nevertheless, it occurs in the mathematical models
of many applications. Oftentimes, it is a subproblem or relaxation of more complex
real-world problems, e. g., (i) in telecommunications traffic has to be routed within the
capacity of cables or bandwidth restrictions of base station antennas, (ii) in logistics the
capacity restrictions of trucks, planes, ships have to be met, and (iii) in finance the costs
of taken decisions must be within a given budget.
Furthermore, each individual constraint of a general 0-1 integer linear program (0-1

ILP) can be considered as knapsack constraint. Therefore inequalities for the knapsack
polytope can be used as general cutting planes to 0-1 ILPs. In fact, many results from
the 1950/60s on the polyhedral structure of the knapsack polytope were obtained when
considering individual rows of 0-1 ILPs; cf. Martello and Toth [119].
The knapsack problem, its variants, and extensions have been studied for several

decades. For example, Karp [91] has investigated the complexity of the knapsack problem
showing its NP-hardness. Kolesar [98] and Horowitz and Sahni [82] have considered
branch-and-bound approaches to solve the knapsack problem exactly. At the same time,
a polynomial time approximation scheme has been presented by Johnson [87]. One year
later, a fully polynomial time approximation scheme has been published by Ibarra and
Kim [83]. Whereas Salkin and De Kluyver [142] have studied the relation between ILPs
and knapsack problems. Dudzinski and Walukiewicz [62] have studied LP and Lagrangian
relaxations of the problem obtaining lower/dual bounds. In 1979 Martello and Toth [115]
have presented an exact exponential algorithm to solve the binary knapsack problem.
An algorithmic survey including dynamic programming approaches is given in Martello
and Toth [118] and the books by Martello and Toth [119] and Kellerer et al. [92].
Besides its simplest form, the binary knapsack problem, many variants and extensions

of the knapsack problem exist. A very famous one is the subset-sum problem where the
item values are identical to the item weights, see Karp [91], Martello and Toth [119]. It has
applications in complexity theory, cryptography and computer science. The (un)bounded
knapsack problem allows items to be selected more than once up to an (optional) upper
bound, see Martello and Toth [119]. The multiple knapsack problem and multiple-choice
knapsack problem group the items such that at most one item per group may be selected,
see Martello and Toth [117], Sinha and Zoltners [146]. In multi-dimensional knapsack
problems, the selected items have to ”fit“ into several knapsacks at the same time while
the weight of an item may differ between these knapsacks, see Weingartner and Ness
[156]. Multi-objective knapsack problems and min-max knapsack problems attach several
values to an item and consider a multi-objective approach to determine the combined
total value of items, see Ehrgott [67]. Furthermore, variants exists where items have to
be selected with minimum value and a total weight above a certain threshold (minimum
knapsack problem), or where the total weight of the items to be selected is given (equality
knapsack problem; if additionally all item values are the same: change-making problem,
see Martello and Toth [116]). Sometimes certain items have to be selected before other
items, leading to precedence constraint knapsack problems, see Boyd [45]. In addition,

15

