

Isabella Hebeiß (Autor)

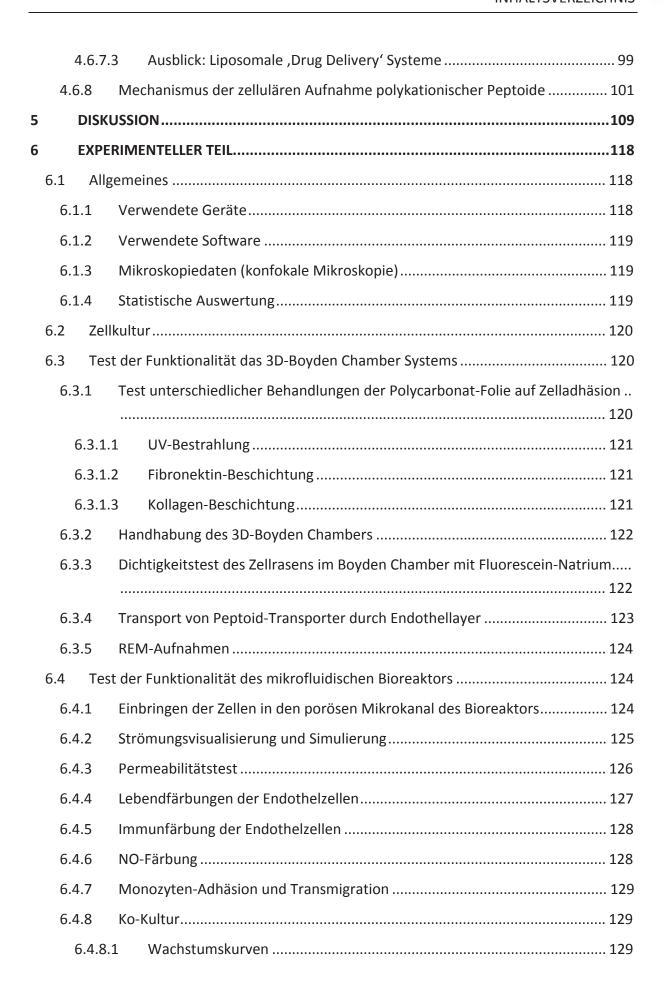
Etablierung eines mikrofluidischen 3D-Bioreaktors zur Untersuchung des transendothelialen Transports "in vitro"

https://cuvillier.de/de/shop/publications/6156

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de



INHALTSVERZEICHNIS

INHALTSVERZEICHNIS								
1		ZUSAMMENFASSUNG						
2		EINL	EITUNG	7				
	2.1	Vas	kuläres System	9				
	2.:	1.1	Aufbau des Endothels	9				
	2.:	1.2	Aufgaben des Endothels	. 11				
	2.:	1.3	Reaktion von Endothelzellen auf Scherstress	. 12				
	2.2	Enc	dotheliale Aufnahme und transendothelialer Transport	. 14				
	2.	2.1	Barrierefunktion des Endothels	. 14				
	2.	2.2	Endozytose	. 14				
	2.2	2.3	Vesikulärer Transport	. 15				
	2.3	,Dr	ug Delivery' Systeme	. 16				
	2.3	3.1	Zell-penetrierende Peptide	. 16				
	2.3	3.2	Peptoide	. 17				
	2.4	Mik	crofluidische Systeme	. 18				
	2.5	Mik	rothermoformen und SMART-Technologie	. 19				
3		ZIEL I	DER ARBEIT	. 23				
4		ERGE	BNISSE	. 25				
	4.1	Ent	wicklung der porösen Mikrokanäle	. 25				
	4.2	Ent	wicklung des 3D-Boyden Chamber Systems	. 25				
	4.3	Ein	satz als 3D-Boyden Chamber	. 31				
	4.3	3.1	Folien-Beschichtung	. 31				
	4.3	3.2	Kultivierung von Endothelzellen im porösen Mikrokanal	. 33				
	4.3	3.3	Dichtigkeitstest des Endothels	. 34				
	4.3	3.4	Wachstum von Endothelzellen auf flacher vs. gekrümmter Oberfläche	. 35				
4.		3.5	Transport polykationischer Peptoide	. 36				
	4.4	Ent	wicklung des mikrofluidischen Bioreaktors	. 39				
	4.5	Tes	t der Einsetzbarkeit des mikrofluidischen Bioreaktors	. 43				
	4.	5.1	Mikrofluidischer Bioreaktor	. 43				

	4.5.2	Einbringen der Endothelzellen	43
	4.5.3	Flow Visualization und Simulierung	
	4.5.4	Permeabilitätstest mit dem mikrofluidischen Bioreaktor	46
	4.5.5	Verhalten von Endothelzellen unter fluidischen Bedingungen	47
	4.5.5.	1 Ausrichtung der Endothelzellen in Flussrichtung	47
	4.5.5.	2 Stress Fiber Bildung	49
	4.5.5.	3 Stickstoffmonoxid-Produktion unter fluidischen Bedingungen	51
	4.5.6	Überprüfung der Konfluenz des Endothellayers im porösen Mikrokanal	52
	4.5.7	Monozyten Adhäsion und Transmigration	58
	4.5.7.	1 Monozyten Adhäsion	59
	4.5.7.	2 Monozyten Transmigration	65
	4.5.7.	3 Direkte Visualisierung der Transmigration von Monozyten	69
	4.5.7.	4 Ausblick: Erzeugung von Proteinmustern im Mikrokanal	7 3
	4.5.8	Besiedelung der unteren Kammer	74
	4.5.8.	1 Wachstumskurven verschiedener Zelllinien	74
	4.5.8.	2 Ko-Kultur im mikrofluidischen Bioreaktor	76
4	.6 End	lotheliale Aufnahme und transendothelialer Transport von Peptoiden	77
	4.6.1	Peptoide allgemein	77
	4.6.2	Zytotoxizitätstest	77
	4.6.3	Qualitative Bestimmung der Peptoidaufnahme unter statischen Bedingunge	
	4.6.4	Quantitative Bestimmung der Peptoidaufnahme unter statischen Bedingun	_
	4.6.4.	1 LC-MS/MS Methode	83
	4.6.4.	2 Externe Kalibrierung	83
	4.6.4.	3 Endotheliale Aufnahme polykationischer Peptoide	86
	4.6.5	Zeitabhängigkeit der Peptoidaufnahme unter statischen Bedingungen	89
	4.6.6	Zeitabhängigkeit der Peptoidaufnahme unter fluidischen Bedingungen	90
	4.6.7	Einsatz des mikrofluidischen 3D-Bioreaktors	93
	4.6.7.	1 Endotheliale Aufnahme	93
	4.6.7.	2 Transendothelialer Transport	96

	6	.4.8.2	Ko-Kultur im mikrofluidischen Bioreaktor	130
6.	5	Endo	otheliale Aufnahme und transendothelialer Transport von Peptoiden	130
	6.5.	.1	MTT-Test	130
	6.5.	.2	Qualitative Bestimmung der Peptoidaufnahme in HUVECs	131
	6.5.	.3	Quantitative Bestimmung der Peptoidaufnahme mittels LC-MS/MS	132
	6	.5.3.1	Verwendete Methode	132
	6	.5.3.2	Herstellung von Zelllysaten	132
	6	.5.3.3	Auswertung	133
	6.5.	.4	Peptoidaufnahme und -abgabe unter fluidischen Bedingungen	133
	6.5.	.5	Einsatz des mikrofluidischen 3D-Bioreaktors	134
	6.5.	.6	Mechanismus der zellulären Aufnahme polykationischer Peptoide	134
6.	6	Mate	erialien	136
7	A	ABKÜ	RZUNGSVERZEICHNIS	139
8	ι	.ITER/	ATUR	141
9	A	AHNA	NG	147
10	Г	DANK	SAGUNG	170