

Jan Wedekind (Autor) Nano-Droplets at Birth Computer Experiments on Gas Phase Nucleation

https://cuvillier.de/de/shop/publications/1972

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Table of Contents

Lis	List of Important Symbols and Abbreviations		IX
1	Introduction		11
	1.1 Phase Transitions and Nuclea	tion	11
	1.2 Research on Vapor-Liquid Nu	acleation	15
	1.3 Task Description		21
2	Theory of Vapor-Liquid Nucleation		23
	2.1 The Nucleation-and-Growth		23
	2.2 The Thermodynamics of a Va	por-Drop System	27
	2.2.1 General Thermodynam		27
	2.2.2 A Hypothetical Vapor-		28
		s: The Generalized Laplace Equation	31
	2.3 Classical Nucleation Theory (34
	2.3.1 The Nucleation Barrier		34
	2.3.2 Steady-State Nucleation	1 Rate	39
	2.4 The Nucleation Theorem		44
	2.5 Corrections and Extensions of	f CNT	46
	2.5.1 The "Self-Consistent"	Correction	46
	2.5.2 Density Functional The	eory (DFT)	47
	2.5.3 Dynamical Nucleation	Theory (DNT)	47
	2.5.4 The Scaled Model		48
	2.5.5 Other Recent Models		48
	2.6 The Modified Liquid Drop M	odel (MLD)	49
	2.7 The Extended Modified Liqui	d Drop Model (EMLD)	53
	2.8 The Reguera-Reiss Theory (E	MLD-DNT)	56
	2.8.1 Basic Concept		56
	2.8.2 The Nucleation Barrier	in the RR Theory	58
3	Molecular Dynamics Simulations		61
	3.1 Basic Concepts and Techniqu	es	62
	3.1.1 Classical Mechanics		63
	3.1.2 Integration of the Equa	tions of Motion	65
	3.1.3 Periodic Boundary Con	ditions	67
	3.1.4 Cluster Identification		68
	3.2 The Lennard-Jones Potential		71
	3.3 Details of the Simulations in t	his Work	73
	3.4 Rate Evaluation, Thermostat,	and Finite-Size Effects	73
4	A New Method to Analyze Rates in	1 Simulations of Nucleation	75
	4.1 The Problem of Determining	Rates in a Simulation	75
	4.2 Rates and Mean First-Passage	Times	80
	4.3 Practical Implementation and	Application in this Work	85
	4.4 Different Cluster Definitions a	and the Critical Cluster Size	89
	4.5 Early Times and Steady-State		90

5		Influence of Different Thermostats on Simulations of Vapor-Liquid	
		leation	93
	5.1	The Different Thermostating Methods	95
		5.1.1 Velocity Scaling	95
		5.1.2 The Andersen Thermostat	95
		5.1.3 The Nosé-Hoover Thermostat	96
	5.2	MD Simulations with Different Thermostats	97
		5.2.1 Details of the simulations	97
		5.2.2 Results	99
		5.2.3 Mean Cluster Temperatures	101
		5.2.4 Discussion of the Simulation Results	106
6	Finit	te-Size Effects in Phase Transitions in Small Systems	111
	6.1	Theoretical Framework: MLD	113
		Evaporation	115
		The "Strey-Approach" to Evaporation	118
	6.4	Nucleation	119
		6.4.1 General Case Study	119
		6.4.2 Optimizing the System Size in Simulations of Nucleation	122
		6.4.3 Optimum System Sizes in this Work	125
	6.5	MD Simulations of Smaller System Sizes	126
7	Hon	nogeneous Nucleation Rates of Argon from MD Simulations	131
	7.1	Nucleation Rates and Critical Cluster Sizes	133
	7.2	Comparison with Nucleation Theory and Experiment	138
		7.2.1 Nucleation Rates	138
		7.2.2 Critical Cluster Sizes	144
		7.2.3 Nucleation Rates in the Scaled Model	147
		7.2.4 Concluding Remarks	149
8	Sum	mary and Outlook	153
	8.1	Summary and Conclusions	153
	8.2	Outlook	155
Арр	endix		157
	A.1	Argon Parameters	157
	A.2	Simulation Results	158
	A.3	Computer Resources	160
		New Subroutines and Analysis Tools	161
	A.5	Details of 2D Simulations	164
	Refe	erences	165
	Erkl	ärung (Statement)	175
		enslauf (Curriculum vitae)	177