

Luis Antonio Barraales Mora (Autor) 2D and 3D Grain Growth Modeling and Simulation

https://cuvillier.de/de/shop/publications/1379

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Contents

Acknowledgements	i		
List of Symbols			
Preface			
 1. Grain Growth Introduction Grain Boundaries Grain Boundaries I.2.1 Low Angle Grain Boundaries I.2.2 High Angle Grain Boundaries I.2.3 Grain Boundary Energy 1.3 Grain Boundary Motion I.3.1 Fundamentals I.3.2 Driving Forces for the Grain Boundary Motion 1.4 Normal Grain Growth I.4.3 Grain Growth Inhibition I.4.3.1 Free-Surface Induced Inhibition I.4.3.2 Particle Induced Inhibition I.4.3.3 Particle Induced Inhibition 			
 2. Grain Growth Modeling and Simulation 1 Introduction 2.2 Modeling and Simulation 3 Grain Growth Models 2.3.1 Monte Carlo Potts Model 2.3.2 Phase Field Model 2.3.3 Vertex Model 2.4 Simulation Model – A Vertex Model Approach – 2.4.1 Equations of Motion 2.4.2 Topological Transformations 2.5 Validation of the Model 2.5.1 Grain Growth kinetics 2.5.2 Comparison with the von Neumann–Mullins Relation 2.5.3 Grain Size Distribution 	22 22 24 24 25 26 27 28 30 33 33 34 36		
 3. Influence of a Magnetic Field on Grain Growth 3.1 Introduction 3.2 The Magnetic Driving Force 3.3 Texture Evolution in Magnetically Annealed Titanium 3.4 Computer Simulations 	39 39 39 41 42		

		3.4.1 Texture and Microstructure Evolution	43 46
	3.5	Von Neumann-Mullins Relation during Magnetic Annealing Magnetic Annealing in a Sample with Randomly Oriented	40
		Grains	48
		3.5.1 Orientation Distribution and Simulation Details	50
		3.5.2 Texture Evolution	51
		3.5.3 Grain Fraction Evolution	53
		3.5.4 Effect of the Magnetic Field on Grain Size Distribution	
		and Topologic Arrangement of the Grains	54
4. Th	e Vert	ex Model, Grain Boundary Junctions and Grain Boundary	
Mi	gratio	n , , , ,	57
	4.1 1	ntroduction	57
	4.20	Frain Boundary Systems with Triple Junctions	58
	4.3 1	riple Junction Motion	59
		4.5.1 Grain Boundary Shape and its Correlation with the	50
		A 3.2 Effect of a Finite Triple Junction Mobility on the	59
		Fvolution of a Multigranular System $(n>6)$	62
		4.3.3 Validation and Verification of the Equations for the	02
		Effect of a Finite Triple Junction Mobility on the	
		Evolution of a Grain Boundary System	63
		4.3.4 Effect of a Finite Triple Junction Mobility on the	
		Evolution of a 2D Polycrystal	69
	4.4 0	Grain Boundary Motion and Dependency of the Boundary	
	E	Energy on Inclination Angle	71
		4.4.1 Modifications of the Vertex Model for the Consideration	
		of the Inclination Dependency	71
		4.4.2 Case of Study – Faceting of <100> Tilt Grain	
		Boundaries	73
		4.4.2.1 Molecular-Static Simulations	74
		4.4.2.2 Vertex-Model Simulations of Grain Boundary	70
		Migration	76
5. 3D	Grain	n Growth Vertex Model	79
	5.1 lı	ntroduction	79
	5.2 3	D Vertex Model	79
		5.2.1 Microstructure Generation	79
		5.2.2 Discretization of the Grain Boundaries	82
		5.2.3 Equation of Motion	84
		5.2.4 Topological Transformations	85
6. Gr	ain Bo	oundary Junctions Revisited	93
	6.1 li	ntroduction	93
	6.2 T	nree-sided Grain Configuration	93
	000	6.2.1 3D Vertex Simulations	94
	0.3 5	Dieady-state Quadruple Junction Motion	95
		0.3.1 Equations of Motion	96
		0.3.2 Effect on Grain Microstructure Evolution	99

6.4 Effect of a Finite Triple Line Mobility on the Evolution		
of a 3D Grain Assembly	103	
6.4.1 Effect on Grain Microstructure Evolution	104	
6.5 Comparison with Theoretical Predictions		
6.5.1 Analytical Description of the Volume Rate of Change 6.5.2 Comparison of the simulation Results with the	105	
MacPherson-Srolovitz Equation	106	
6.5.3 The Effect of a Finite Quadruple Junction Mobility on		
the MacPherson-Srolovitz Equation	109	
7. Summary	112	
Abstract	115	
Zusammenfassung	116	
References	117	
A. Details of the Simulation Program		
A.1 Programming	122	
A.2 Curvature Determination from Local Geometry	123	
B. On Quaternions, Rotations, Orientations and Disorientations		
B.1 Orientations, Rotations and Quaternions	125	
B.2 Mis- and Disorientations	127	
B.3 Random Orientations	129	