

Sebastian Paul (Autor) Die Scattering Element Method (SEM) zum Lösen großskaliger, zweidimensionaler Feldsimulationen

https://cuvillier.de/de/shop/publications/8754

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhalt

Abstract						
Kurzfassung						
1.	Einleitung					
	1.1.	Organi	isation dieser Arbeit	4		
	1.2.	Beiträg	ge zum Stand der Wissenschaft	5		
2.	Grundlagen					
	2.1.	Nomer	ıklatur	8		
	2.2.	Elektro	omagnetische Feldtheorie	8		
		2.2.1.	Wechselwirkung elektromagnetischer Felder mit Materie	10		
		2.2.2.	Randbedingungen elektromagnetischer Felder	11		
	2.3.	Die ele	ektromagnetische Welle	12		
		2.3.1.	Wellenfunktionen	13		
		2.3.2.	Ebene Wellen	15		
		2.3.3.	Elektromagnetische Wellen in einem Medium	16		
		2.3.4.	Reflexion und Transmission elektromagnetischer Wellen an Material-			
			grenzen bei senkrechtem Einfall	17		
		2.3.5.	Wellenleiter mit rechteckigem Querschnitt	18		
		2.3.6.	Reduktion auf zweidimensionale Probleme	22		
	2.4.	Streup	arameter	23		
		2.4.1.	Streuparameter für Wellenamplituden	25		
		2.4.2.	Streuparameter für Leistungswellen/normierte Wellengrößen	26		
		2.4.3.	Die Unitarität der Streumatrix	27		
	2.5.	Signal	lussgraphen	27		
		2.5.1.	Aufbau	28		
		2.5.2.	Mason's Regel	29		
		2.5.3.	Matrix-Methode	33		
		2.5.4.	Interpretation der Ergebnisse und Vergleich zu Mason's Methode	35		
		2.5.5.	Geschlossene Graphen	37		
	0.0	2.5.6.	Implementierung	40		
	2.0.	Numer	Die LUZ zelemen und ihre Verienten	41		
		2.0.1.	Die LU-Zerlegung und inre varianten	42		
		2.0.2.	Iteratives verteinern der Losung	45		
3.	Die Scattering Element Method (SEM)					
	3.1.	Histori	sches (zur klassischen TLM-Methode)	48		
		3.1.1.	Stand der Forschung	51		
	3.2.	Die El	emente der FDSEM	51		
		3.2.1.	Die Wave Sampling Matrix (WSM)	52		
		3.2.2.	Verallgemeinerung des Lösungsansatzes	57		
		3.2.3.	Materialübergänge	60		

Inhalt

		3.2.4. Die Simulationsgrenze/Boundary	61			
	3.3.	Der (klassische) FDSEM-Algorithmus	63			
	3.4.	Beschreibung der globalen Lösung	63			
	3.5.	Darstellung von Feldverläufen	65			
	3.6.	Beispiel: Ebene Welle vertikaler Einfall	67			
		3.6.1. Das Simulationsmodell	67			
		3.6.2. Der Feldverlauf	67			
		3.6.3. Erläuterung mittels Signalflussgraph	69			
	3.7.	Dispersionsbeziehung im zweidimensionalen FDSEM-Gitter	72			
		3.7.1. Dispersion im (FD-) SEM-Gitter mit der TLM- und FDTLM	73			
		3.7.2. Dispersion im FDSEM-Gitter mit der WSM	76			
	3.8.	Beispiel: Lösen rechteckiger Wellenleiter mit der FDSEM	78			
		3.8.1. Die Randbedingungen und Polarisation	79			
		3.8.2. Die Berechnung	80			
		3.8.3. Der Feldverlauf	81			
		3.8.4. Eigenfrequenzen	85			
		3.8.5. Ausbreitungskonstante	89			
4.	Folg	erungen aus dem Portformalismus	91			
5.	FDS	EM zum Lösen großskaliger unstrukturierter Simulationsbereiche	93			
	5.1.	Unterteilung des Modells in Teilbereiche (Schritt 1)	95			
		5.1.1. Vergleich des Speicherbedarfs	96			
	F 0	5.1.2. Strategien zur Aufteilung	101			
	5.2.	Losen der einzeinen Interface-Matrizen (Schritt 2)	101			
		5.2.1. Deschreibung des Problems	102			
		5.2.2. Duellentransformation	105			
	53	J.2.5. Quehentransionmation	107			
	5.3.54	Berechnung der inneren Ports der einzelnen Teilbereiche (Schritt 4)	107			
	5.5	Das Preprocessing	108			
	5.6	Beispiel: Unstrukturiertes FDSEM-Problem	111			
	0.0.	5.6.1. Hintergrund	111			
		5.6.2. Die FDSEM-Simulation	112			
		5.6.3. FDSEM-Simulation vs. FDTD	116			
~	FDC		101			
υ.	FUSEIVI zum Losen großskaliger strukturierter Simulationsbereiche					
	6.2	Des strukturierte Simulationsmodell	124			
	0.2. 6.3	Freebrice	124			
	0.0.	6.3.1 Speichernutzung	126			
		6.3.2. Messung vs. FDSEM-Simulation	127			
7.	Zusa	mmenfassung und Ausblick	129			
_						
8.	Арре	endices	131			
An	A. Herleitungen	133				
	A.1. Herleitung k' und k''					
	A.2.	Ebene Welle kleines Modell	134			
	A.3.	Herleitung der FDTLM	135			

Inhalt

A.4. Speicher	139						
Anhang B. Ergebnisse B.1. Rechteckhohlleiter U_y B.2. Vivaldi-Antenne	141 141 144						
Literaturverzeichnis							
Veröffentlichungen							