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1. Prologue
The way, in which this thesis is organized, is given in the summary both in writing as well as in
a graphical manner; see page 211ff.

1.1. Summing Two Oscillations of Equal Angular
Velocity

Amajor backbone of the theory presented in the work at hand consists of summing one intended
and one unintended oscillation, in order to investigate to which extent the resulting oscillation
differs from the intended one. Prior to embedding this task in a technical context, it is treated
purely mathematical. An oscillation can be described via the angular functions cosine or sine

Ũ�(t) = U cos[ωut− φu] (1.1)
Ũ�(t) = U sin[ωut− φu], (1.2)

with U as amplitude, ωu as angular velocity and φu as instantaneous phase. Additionally, a
single oscillation can be thought of as vector �U(t) in the complex plane, being attached at its
base to the coordinate system’s origin around which it spins counterclockwise for growing twith
the angular velocity ωu. Then Ũ�(t) describes the real part, that is to say the projection of the
vector �U(t) onto the real axis and Ũ�(t) the projection onto the imaginary axis corresponding
to the imaginary part. Figure 1.1 visualizes this context, whereas 1.1a depicts both the vector
�U(t) and its projections onto the real and imaginary axis for an arbitrary time t, respectively,
and 1.1b shows its projection onto the real axis versus time t.

The expression capturing this relation of a vector’s/complex number’s representation by its
phase and absolute value on the one hand and on the other hand by its real and imaginary part
is Euler’s relation, which applied on �U(t) is:

Uej[ωut−φu] = U(cos[ωut− φu] + j sin[ωut− φu]) (1.3)

To summate two vectors, �U(t) and �A(t), here, both of identical angular velocity ωu, but different
in phase and with A < U , the base of one vector is attached to the tip of the other, as shown
in figure 1.2. The resulting vector �R(t) corresponds to the straight line between the base of the
first one and the tip of the second one. Choosing time t to equal the ratio φu/ωu corresponds to
pivoting both �U(t) and �A(t) and thus the resulting �R(t) around the origin of the gray indicated
coordinate system so that �U lays on the positive abscissa. Figure 1.3 depicts this constellation
in which the base of �A(t) is attached to the tip of �U(t) with the angle φu − φa relative to the
abscissa. This angle follows directly from the argument of �A(t) for t = φu/ωu. There are two
ways of calculating the length of �R: One is by applying the law of cosines. The angle between
�U(t) and �A(t) is calculated to π − α as illustrated in figure 1.3:

R =
√
U2 + A2 − 2UA cos[π − (φu − φa)] (1.4)

=
√
U2 + A2 + 2UA cos[φu − φa] (1.5)
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Figure 1.1.: (a) �U(t) in the complex plane and its projections onto � and �, (b) Ũ�(t) versus
time t.
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Figure 1.2.: �U(t) + �A(t) = �R(t).
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The second option consists of applying the Pythagorean theorem:

R =
√
(U + A cos[φu − φa])2 + (A sin[φu − φa])2 (1.6)

=
√
U2 + 2UA cos[φu − φa] + A2 cos2[φu − φa] + A2 sin2[φu − φa]︸ ︷︷ ︸

=A2

(1.7)

=
√
U2 + A2 + 2UA cos[φu − φa]. (1.8)

Also depicted in figure 1.3 the phase angle φr of the resulting vector is given by the inverse
tangent of the imaginary part of �R(φu/ωu), which constitutes the opposite leg, divided by the
real part of �R(φu/ωu), which resembles the adjacent leg:

φr = arctan

[
A sin[φu − φa]

U + A cos[φu − φa]

]
. (1.9)

After these preparing considerations, the initial intention to express two oscillations by a sin-
gle one is presumed. To start with both summands, Ũ(t), Ã(t), are expressed as real part of a
complex number, each given by its absolute value and phase. Then ej[ωut−φu] is factored out,
which corresponds to the above mentioned pivoting, so that �U(t) lays on the positive abscissa;
(1.12). R · ejφr describes the resulting vector as previously discussed, before ej(ωut−φu) is fac-
tored in again; (1.14). Next the operator � reduces the complex number to its real part, before
the expressions (1.8), (1.9) are inserted.

U cos[ωut− φu] + A cos[ωut− φa] (1.10)

(A.1)
= �

{
Uej[ωut−φu] + Aej[ωut−φa

=+0︷ ︸︸ ︷
−φu + φu]

}
(1.11)

= �
{
ej[ωut−φu]

(
U + Aej[φu−φa]︸ ︷︷ ︸

see fig. 1.3

)}
(1.12)

= �
{
ej[ωut−φu]R · ejφr

}
(1.13)

= �
{
R · ej[ωut−φu+φr]

}
(1.14)

= R cos[ωut− φu + φr] (1.15)
(1.8)
(1.9)
=

√
U2 + A2 + 2UA cos[φu − φa]

· cos
[
ωut− φu + arctan

[ A sin[φu − φa]

U + A cos[φu − φa]

]
︸ ︷︷ ︸

=:φr

]
. (1.16)

α:=φu−φa
=⇒ φr(α) = arctan

[ A sin[α]

U + A cos[α]

]
(1.17)

The expression (1.16) describes the resulting time signal. Due to adding the oscillation Ã(t)
to the oscillation Ũ(t), both of the identical angular velocity ωu, R’s amplitude as well as its
phase φr do change depending on U,A, α. φr describes the extent to which the resulting os-
cillation’s phase deviates from Ũ(t)’s phase. Both of the following two figures, 1.4 and 1.5,
visualize φr(α) for several ratios A

U
with U = 1. The angles are given in degree. For low
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ratios of A
U
the sinus clearly dominates the course, due to the fact that the argument of the

inverse tangents approximates the inverse tangents well as long as the argument remains foot-
notesize of value. Nevertheless, even by eye-inspection it can be observed, that the maximal
phase deviation rapidly grows and moves from α = 90◦ to α = 180◦ for an increasing ratio
A
U
. When A

U
reaches unity, φr(α) resembles a saw tooth and for growing α it experiences a

phase jump from +90◦ to −90◦ at α = 180◦. Due to arctan, sin resembling an odd function,
that is −f(x) = f(−x), and the sin, cos being of the same periodicity, φr(α) constitutes an
odd, periodic function. Additionally, in figure 1.6 the length R of the resulting vector is plotted
versus the phase difference α := φu − φa. The plotted domain is chosen such, that it allows to
clearly recognize the different curvatures of the extrema by comparing minima and maxima.
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Figure 1.4.: Phase deviation φr(α) of R̃(t) with respect to Ũ(t) due to Ũ(t) + Ã(t) versus
α = φa − φu for A

U
= 0.05, 0.1, 0.2. Maxima at (αmax, φmax) = (92.89, 2.87),

(95.76, 5.74), (101.55, 11.54), all in degree.
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Figure 1.5.: φr(α) for A
U

= 0.1, 0.2, 0.5, 0.75 with (αmax, φmax) = (95.764, 5.7),
(101.52, 11.54), (11.88, 30), (138.6, 48.59), all in degree.

In the context of the thesis at hand, the value of this phase deviation, its maximum in particular,
is of major interest. This interest can be addressed by solving the extreme-value problem based
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Figure 1.6.: R(α) for A
U
= 0.1, 0.2, 0.5, 0.75.

on the derived, analytical expression (1.17). To solve an extreme-value problem, the first and
the second derivation with respect to the variable of interest are required. Here, the variable
of interest is given by α := φu − φa. The first derivation calculates to

dφr(α)

dα
=

d

dα
arctan

[
A sin[α]

U + A cos[α]

]
(1.18)

=
1

1 +
(

A sin[α]
U+A cos[α]

)2 · A cos[α](U + A cos[α])−A sin[α](−A sin[α])

(U + A cos[α])2
(1.19)

=
UA cos[α] +

=A2︷ ︸︸ ︷
A2 cos2[α] + sin2[α]

(U + A cos[α])2 + A2 sin2[α]
(1.20)

=
UA cos[α] + A2

U2 + 2UA cos[α] + A2 cos2[α] + A2 sin2[α]
(1.21)

= A
U cos[α] + A

U2 + 2UA cos[α] + A2
, (1.22)

and the seccond to

d2φr(α)

dα2

= A
−U sin[α]

(
U2 + 2UA cos[α] + A2

)− (U cos[α] + A)(−2UA sin[α])

(U2 + 2UA cos[α] + A2)2
(1.23)

= A
−U3 sin[α]− 2U2A sin[α] cos[α]− UA2 sin[α] + 2U2A sin[α] cos[α] + 2UA2 sin[α]

(U2 + 2UA cos[α] + A2)2

(1.24)

= A
−U3 sin[α] + UA2 sin[α]

(U2 + 2UA cos[α] + A2)2
(1.25)

= AU
(A2 − U2) sin[α]

(U2 + 2UA cos[α] + A2)2
. (1.26)
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For an extremum the first derivation equals zero for α = αex. Thus, (1.22) is set equal to zero
and solved for αex:

dφr(αex)

dα
!
= 0 =⇒ U cos[αex] + A = 0 (1.27)

cos[αex] = −A
U

(1.28)

αex = arccos[−A
U
]. (1.29)

In order to determine, whether this extreme is a mini- or maximum, αex is inserted into (1.26).
An outcome below zero identifies the extremum at hand as a local maximum. As the denomi-
nator is to the power of two, it will not change the sign of the ratio. Thus, only the nominator
remains to be investigated:

AU(A2 − U2) sin[arccos[−A
U
]] (1.30)

(A.8)
= AU · (A2 − U2) ·

√
1− (−A

U
)2. (1.31)

Both the first and third factor are greater than zero, whereas the second one is footnotesizeer
than zero, due to A < U . In case of A > U both would reverse their roles with one another.
Thus, the second derivation of the phase deviation φr with respect to the phase difference α is
footnotesizeer than zero at αex, which in turn proves the extremum in the interval α ∈ [0, π] to
be a maximum; αex =: αmax.
Inserting this αmax into (1.9) determines the value of the maximal phase deviation.

φr(αmax) = arctan

[
A sin

[
arccos[−A

U
]
]

U + A cos
[
arccos[−A

U
]
]] (1.32)

(A.8)
= arctan

[ A
√

1− (−A
U
)2

U + A(−A
U
)

]
(1.33)

= arctan

[ A
U

√
U2 − A2

U2−A2

U

]
(1.34)

= arctan

[
A
√
U2 − A2

√
U2 − A2

√
U2 −A2

]
(1.35)

= arctan

[
A√

U2 − A2

]
(1.36)

= arctan

[
1√

1
(A
U
)2
− 1

]
(1.37)

Before plotting φr(αmax) a more descriptive treatment of the mechanism at work proceeds in
order to offer a better intuitive understanding. Figure 1.7 depicts vector �U in green, the added
vector �A in blue at two different angles α as well as the resulting vector �R = �U + �A in orange
including its phase φr relative to �U . Additionally, the blue, dotted circle indicates all possible
positions which the tip of �A can take by �A orbiting at its base around the tip of �U . Thus, this orbit
and the base of �U illustrate all possible resulting vectors �R. Starting with α = 0, the resulting
phase deviation φr equals zero whilst the absolute value possesses it maximal value Rmax =
U + A cos[0] = U + A. By increasing α, the tip of �A moves counterclockwise (ccw) along
the orbit, thus increasing the relative phase φr between �U and �R. Simultaneously, the absolute
value R shrinks. R continuous to shrink till it passes its minimal valueRmin = U +A cos[π] =
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Figure 1.7.: Vector addition of �U, �A.

U − A and increases again till the initial situation is reached at α = 2π. Thus, the initially
increasing φr reaches a maximum value at an αmax before decreasing, passing zero and due to
the symmetry with respect to the abscissa passes through a minimum at αmin = 2π−αmax with
φr,min = −φr,max before equaling zero again at α = 2π. During the course of the previously
described movement, �R, its tip always ending on the blue orbit, "cuts" this orbit, see figure 1.7,
before its tip passes through the point with φ(αmax) in which it is directed outermost away from
�U ’s tip, see figure 1.8. For αmax the vector �R lays on the tangent through the base of �U and the
blue orbit and thus in turn has to be perpendicular to �A as the latter resembles the radius of the
mentioned orbit. As �U , �A,�R constitute a rectangular triangle for φ(αmax) with U as hypotenuse
a (half-)circle can be drawn (above)around U being its diameter. Then, wherever depending on
A, "Thales" (half-)circle and the blue orbit intersect, �R has taken on its maximal phase deviation
for αmax ∈ [π

2
, π[ and its minimal phase deviation for αmin ∈]π, 3

2
π] , respectively.

U

ARφr,max

φr,max
αmax

Figure 1.8.: Resulting vector with maximal phase deviation φ(αmax).

In addition to deriving the expression (1.36) for φr(αmax) by solving an extreme-value-problem,
the knowledge of �U , �A,�R forming a rectangular triangle can be put to use in order to derive
a different expression for φr(αmax) as done in by Geise and Geise in [8]: U resembles the
hypotenuse and A the opposite leg. Thus,

φr(αmax) = arcsin[
A

U
] (1.38)
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describes the desired angle. Figure 1.9 serves to gain the insight that both given expressions,
(1.36),(1.38), for φr(αmax) equal one another. Geise and Geise deduce (1.38) from the triangle
a , r , u . Whilst (1.9) has been derived relaying on a scatch of the situation with
α ∈ [0, π

2
[, see figure 1.3 in order to ease the understanding. Nevertheless it holds true for

values of α beyond π
2
, because the cosine of α ∈ [π

2
, 3
2
π] yields a negative value. Thus, U +

A cos[αmax] describes the adjacent and A sin[αmax] the opposite leg of the triangle a , ar ,

u . Figure 1.10 depicts the phase deviation αmax between �A, �U in degree versus the ratio A
U
,

U

A
Rαr,max

a ar r

u

φr,max

αmax
γ

A cos[αmax]

A sin[αmax]

Figure 1.9.: Graph displaying the orbits of the vectors �U, �A, �R.

which relates to the maximal phase deviation φmax, between �U and the resulting �R. Inserting
this αmax into (1.17) yields the dependency as figure 1.11 visualizes it. The graph, φ(αmax)
versus αmax resembles a straight line. This can be easily understood by envision that the triangle
involved is a rectangular one: Thus, γ = π

2
− φr,max by which α can be described as π − γ.

Inserting the expression for γ and solving for the phase deviation of interest yields the equation
of a line: φr,max = αmax − π

2
, with the y-intercept at −π

2
. Hence, the maximal phase deviation

between �U ,�R is a quarter period lower than the related phase deviation αmax between �U , �A.
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Figure 1.10.: αmax between �U, �A versus A
U
for U = 1 causing φr,max.

8



90 100 110 120 130 140 150 160 170 180
0

10

20

30

40

50

60

70

80

90
0 0.17 0.34 0.5 0.64 0.77 0.87 0.94 0.98 1

0

Figure 1.11.: φr,max versus αr,max. Both in degree.

Figure 1.12 illustrates the dependency of φr,max in degree directly plotted versus the ratio A
U
.

The fact that the plots of both (1.36) in yellow and (1.38) in dashed black perfectly match,
illustrates once more that these two expressions are equivalent. In order to allow for a better
comparison, the figures 1.11, 1.12 do have a second x-axis at the top of the frame, labeled with
the values corresponding to the x-axis at the bottom.
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Figure 1.12.: φr,max versus A
U
for U = 1.

1.2. Summing Two Oscillations of Different Angular
Velocity

In the previous section, the sum of two oscillations, different in phase but of the same angular
velocity, is expressed as a single oscillation. In compliance with the Fourier analysis, this
resulting oscillation possesses the same angular velocity as its components. Further its phase,
which in the work at hand comprises the major interest, is investigated with respect to its course
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and its extrem/peak values depending on the involved parameters; A, U . On this basis, the sum
of two oscillations of different phase and now as well of different angular velocity is expressed
as a single oscillation:

U cos[ωut− φu] + A cos[ωat− φa] (1.39)

(A.1)
= �

{
Uej[ωut−φu] + Aej[ωat−φa

=+0︷ ︸︸ ︷
+ωut− φu − ωut+ φu]

}
(1.40)

= �
{
ej[ωut−φu]

(
U + Aej[(ωa−ωu)t+φu−φa]

)}
(1.41)

= �
{
ej[ωut−φu]Rt · ejφrt

}
(1.42)

= �
{
Rt · ej[ωut−φu+φrt]

}
(1.43)

= Rt cos[ωut− φu + φrt] (1.44)
(1.8)
(1.9)
=

√
U2 + A2 + 2UA cos[(ωa − ωu)t + φu − φa]

· cos
[
ωut− φu + arctan

[ A sin[(ωa − ωu)t + φu − φa]

U + A cos[(ωa − ωu)t + φu − φa]

]
︸ ︷︷ ︸

=:φrt

]
.(1.45)

With Δω := ωa − ωu and α = φu − φa the absolute value Rt and the phase φrt can be written
as:

Rt(t) =
√
U2 + A2 + 2UA cos[Δωt+ α] (1.46)

φrt(t) = arctan
[ A sin[Δωt+ α]

U + A cos[Δωt+ α]

]
. (1.47)

Besides the "angular velocity"Δω times t in the angular functions (1.8), (1.32) are identical to
(1.46), (1.47).
Factoring out Δω from φrt’s argument offers directly the insight, that the course is shifted to
lower values of t by α

Δω
for α,Δω > 0. The periodicity can be derived from the involved

angular velocities:

Δω = ωa − ωu = 2π(fa − fu) =
2π

ΔT
(1.48)

equating coef.
=⇒ ΔT =

1

fa − fu
=

1
1
Ta

− 1
Tu

=
TaTu
Tu − Ta

. (1.49)

Figure 1.13 depicts the course of the resulting phase deviation φrt in degree versus time t in
seconds calculated for fu = 30 Hz, fa = 35 Hz and α = π

3
in an exemplary manner.

Due to the similarities of the situationsφr and φrt are described by the same function. Therefore,
the values of the extrema are identical aside from occurring related to different variables. They
occur when the argument takes on the values determined in subsection 1.1. Instead of solving
the extreme-value problem again, the argument of φrt can be set equal to αmax of φr, (1.17),
and solved for the variable t = tmax:

Δωtmax + α
!
= αmax (1.50)

⇐⇒ Δωtmax + α = arccos[−A
U
] (1.51)

⇐⇒ tmax =
1

Δω

(
arccos[−A

U
− α]

)
. (1.52)
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Figure 1.13.: φrt versus t for fa = 35Hz, fu = 30Hz and A
U

= 0.1, 0.2, 0.5, 0.75 with U = 1
and α = π

3
.

Thus the value of the variable leading to the maxima (extrema) is reduced by the actual phase
difference α and then stretched or compressed by the inverse of the difference of the angular
velocities. The distance from the beginning of one periode, zero-crossing with φ̇rt > 0, to tmax

follows by (1.53) with α = 0:

tmax =
1

Δω
arccos[−A

U
]. (1.53)

The point symmetry of the arctan to the half of its period length ΔT
2
allows to calculate the time

from the beginning of the periode to the minima as:

tmin = ΔT − tmax (1.54)

= ΔT − 1

Δω
arccos[−A

U
], (1.55)

whilst the time between the maxima and minima equals:

Δtmax,min = tmin − tmax = ΔT − 1

Δω
arccos[−A

U
]− 1

Δω
arccos[−A

U
] (1.56)

= ΔT − 2

Δω
arccos[−A

U
]. (1.57)

In contrast to the scenario analyzed first, the vector �A(t) added in the second oscillates with
an angular velocity ωa, which differs from ωu. This difference of angular velocities causes the
phase of the resulting vector �R(t) with respect to the original vector �U(t) and the absolute value
of �R(t) to depend on time t with a periodicity given by (1.49). Thus, the first constellation,
not depending on time, is classified as static and the second one as dynamic. Once attained the
relative relation between the vectors does not change in the static setup, all values possible for
�Rrt, φrt for a given parameter set U,A, α,Δω are embraced within the time intervalΔT .
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Figure 1.14.: Resulting vector length Rrt versus time t for fa = 35Hz, fu = 30Hz and A
U

=
0.1, 0.2, 0.5, 0.75 with U = 1 and α = π

3
. Note: The courses deviate from the

ordinate value one in an unsymmetrical manner.

1.3. Technical Context
Regardless of its specific technical context any quantity represented by the oscillating vectors
�U(t), �A(t) has to be detected by a receiver and displayed before it can be interpreted. Hence, in
order to interprete the gathered data correctly, the receiver settings have to be taken into account.
Any receiver integrates a signal over a time interval in order to generate one data point as to say
output, e.g. for a display. Assuming a correspondingly chosen averaging, neither the length nor
the placement of the integration interval relative to the signal will alter the outcome in the static
setup. In the dynamic case (1.45), (1.46), (1.47) describing the signal due to the superposition,
its absolute value, its phase deviation, respectively change with the observation time. Based on
these equations and, even more intuitively, based on the plotted course of the phase deviation,
figure 1.13, and the resulting absolute value, figure 1.14, it becomes clear, that the length of the
interval, as well as its start and end, can have an impact on the datapoint. For instance, due to
the point symmetry to nΔT

2
with n ∈ Z, the integral of the phase deviation yields zero, if the

integration interval is equally spaced around nΔT
2
. In contrast to that, the function describing

the absolute value is not point symmetric to any point of its period ΔT . Thus, even integrating
it over exactly one periodΔT will result in an offset with respect to the undisturbed oscillation.
Up to this point, the superposition of two vectors in the static as well as in the dynamic scenario
has been treated solely mathematically. This gives rise to the reasonable question: What sparks
the motivation to do so at all? There is a large variety of technical frameworks in which vectors
describe the quantities involved and thus in turn not only offer a qualitative insight into their
superposition, but also allow for quantifying the outcome of the latter.
Every acquisition of a signal is accompanied by noise, regardless whether it is of electrical or
acoustical nature. Here, the vector �U(t) resembles either the signal itself or one of its Fourier
components whilst the additional �A(t) describes a noise component. Based on this concept,
additionally including measurement uncertainties Geise and Geise [8] for instance derive the
required dynamic measuring range for a desired phase as well as magnitude uncertainty.
Another example for vector addition refers to antenna measurement; �U(t) refers to a continuous
wave signal at measurement frequencies and �A(t)might be a component reflected at an absorb-
ing wall. Whereas the amplitude is known directly due to the absorber properties, the phase of
�A(t) can be considered a random variable.
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In addition to a cw scenario, the presented vectorial approach even allows to model the impact
of multipath propagation on modulated signals and thus in turn upon transferring information
e.g. in the realms of navigation; GPS [9, p. 257], . . . , DME, (D)VOR. For instance, in case of
the (D)VOR this can be the 30 Hz sideband modulation superimposed with an undesired 35 Hz
signal, which may come from a non-static scatterer.
The very high frequency omnidirectional radio range (VOR) and its follow up version, the
Doppler VOR (DVOR), whose functionality is explained in more detail at the beginning of
chapter 2, has become a very timely topic. The (D)VOR is a navigation system, the ground
station of which provides bearing intelligence over a radius of up to 300 km [81]. One of two
signals delivers the actual bearing intelligence by its relative phase, whilst the second signal —
emitted in an omnidirectional manner — serves as reference.
Aside from the finite nature of fossil energy sources, their contribution to the climate change
due to using them and consequently other related effects of global impact have generated the
public motivation to reduce the dependency on them. Alternatively, using energy created by
nuclear fission has created the longterm problem of having to store its waste. The accident 1986
in Tschernobyl and ultimately the disaster 2011 in Fukushima have sparked a big momentum
in the green energy movement. This is reflected e.g. by the fact, that the German Bundestag
in 2011 decided to abandon nuclear energy completely, the Renewable Energy Law, in German
Erneuerbare Energien Gesetz (EEG), and the considerations regarding a climate neutral Ger-
many [10].
Despite the knowledge of these in terms of humanity self-created existential problems it is most
likely that the demand for energy keeps increasing. Paired with the common lethargy with re-
spect to act upon the obvious problems at hand, this demand urges to assess renewable sources.
Amongst these wind energy constitutes a major portion [11]. Of course areas with a high wind
intensity most likely offer the best chances for wind turbines. A higher hub height and longer
rotor blades increase the efficiency of a wind turbine. This is why nowadays wind turbines have
their hubs 120 m or higher above the ground whilst their blade length can reach 65 m and more.
For such or constructions lightning protection is mandatory, so a metal structure of some kind is
incorporated. This in turn increases the potential interaction of a wind turbine with electromag-
netic waves. The touching point between the wind energy and the (D)VOR is that many ground
stations were built in windy areas. In order to protect the bearing intelligence from impairing
effects, the International Civil Aviation Organization (ICAO) has defined building restricted ar-
eas (bra). Figure 1.15 schematically depicts the cross-section of the bra the center of which
corresponds to the center of the antenna array on the ground. The bra consists of one cone with
an elevation angle of 1◦ and two concentric cylinders. In case of a conventional VOR the bigger
radius equals 15 km, in case of a Doppler VOR 10 km. Thus, to be more precise the bra defines
a volume. And as soon as any intended construction enters this volume the ICAO requires to
individually investigate its impact upon the signal in question. In addition to that the ICAO
recommands to always investigate the influence of tall constructions; skyscrapers, TV-towers
and such alike [12].
In Germany the §18a LuftVG regulates that the federal offic of flight saftey, in German Bundes-
amt für Flugsicherheit (BAF), is to decide, whether an intended construction can have an im-
pact on services related to flight safety. This decision is to be based on a consultant’s advisory
opinion. Here the BAF relies up to now exclusively on the Deutsche Flugsicherung (DFS).
According to a poll [13] conducted by the German Wind Energy Association, in German Bun-
desverband WindEnergie (BWE), in 2015 a wind power equivalent of 2333 MW could not
be realized due to the DFS’s ostensible safety concerns regarding VHF omnidirectional radio
range, 39 of the total of 59 in the BRD are of the Doppler type. In 2019, the BWE repeats
the survey with higher degree of detail [14]. This update reveals that currently planned and
financially backuped wind turbines equivalent to 1680 MW are denied to be installed due to
VOR and 3109 MW due to DVOR safety concerns. By considering a financial investment of
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Figure 1.15.: Cross section of the axially symmetrical building restricted area (volume) accord-
ing ICAO EUR DOC 015.

1.5 million Euro per MW this corresponds to about 2.5 billion Euro and 4.7 billion Euro on
hold due to the DFS’s assessment of concerns regarding the VOR and DVOR, respectively. Of
course safety concerns have to be taken seriously. A manifold of reasons such as

• the fact that no physical reasoning is given for the design of the bra,

• the fact that in 2017 Belgium has reduced the radius down to 7 km beyond which wind
turbines footnotesizeer than 200 m in height get approved without having experienced
drawbacks in flight navigation [15, 16],

• the flaws in the technical argumentation of the DFS [17],

• the increasing number of court procedures with the DFS on one and wind power operators
on the other side,

• . . .

• the fact that political issues seem to dominate the way how this conflict of interests is
handled

prove the high demand of a solid understanding of the involved physics, the need to understand,
which quantities do have an impact on the output of an ideal receiver and the need for the
capability to quantify their impact on it.
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