

Lasse Jannis Frey (Autor)

Entwicklung und Charakterisierung von Tropfen-Bioreaktoren

https://cuvillier.de/de/shop/publications/8528

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany

Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Inhaltsverzeichnis

1. EINLEITUNG UND ZIELSETZUNG	1
2. THEORETISCHE GRUNDLAGEN	4
2.1 Nutzen von miniaturisierten Kultivierungssystemen	5
2.1.1 Einsatz von Mikrobioreaktoren in der Prozessentwicklung	6
2.1.2 Einsatz von Mikrobioreaktoren als analytisches Messinstrument	10
2.2 EINSATZ AKTIVER MISCHTECHNIKEN IN MIKROBIOREAKTOREN	13
2.3 SCHWINGUNG VERTIKAL OSZILLIERTER TROPFEN	17
2.4 Integration optischer Sensoren in MBR-Systeme	20
2.4.1 Nephelometrische Methoden zur Bestimmung der Biomassekonzentration	21
2.4.2 Opto-chemische Lumineszenz-Sensoren	22
2.5 GRUNDLAGEN MIKROBIELLEN WACHSTUMS	25
2.6 DER MODELLORGANISMUS ESCHERICHIA COLI	27
2.7 CHINESE HAMSTER OVARY (CHO) ZELLEN	28
3. MATERIAL UND METHODEN	30
3.1 MIKROBIOREAKTOREN UND IMPLEMENTIERTE SENSORIK	30
3.1.1 Micro Sphere Reactor als Modell-Mikroreaktor für die Homogenisierung über vertikale Oszillat	ion. 30
3.1.2 Der capillary wave micro-bioreactor als Modellreaktor für sessile Tropfen	<i>3</i> 3
3.2 ELEKTROMAGNETISCHE OSZILLATIONSPLATTFORM	37
3.3 Analyse der Mischzeiten und Partikelverfolgung	38
3.4 ANALYSE DES VOLUMENBEZOGENEN SAUERSTOFFÜBERGANGSKOEFFIZIENT KLA	40
3.5 KULTIVIERUNG VON ESCHERICHIA COLI BL21 (DE3) PMGBM41	41
3.6 KULTIVIERUNG VON CHO-K1- UND CHO-HIT-ZELLEN	44
3.6.1 Kultivierung im Schüttelkolben	44
3.6.2 Bestimmung der Zellkonzentration und Zellviabilität	
3.6.3 Kryokonservierung der CHO-Zellen	50
3.6.4 Auftauen von CHO-Zellen und Zellaussaat	51
3.6.5 Kultivierung im Mikroreaktorsystem cwMBR	51
3.6.6 Analytische Methoden	52
4. ERGEBNISSE UND DISKUSSION	54
4.1 HOMOGENISIERUNG VON KLEINSTVOLUMINA	54
4.1.1 Homogenisierung mittels vertikaler Oszillation	54
4.1.2 Entwicklung einer Plattform für die gezielte vertikale Oszillation	56
4.1.3 Homogenisierung durch Oszillation der Flüssigkeitsoberfläche	60
4.1.4 Charakterisierung des Stofftransports im Micro Sphere Reactor	63
4.1.5 Kultivierung von Escherichia coli im Micro Sphere Reactor	69

4.1.6 Kurzfazit zur vertikalen Oszillation des Micro Sphere Reactors	71
4.2 ENTWICKLUNG EINES MBR-DESIGNS FÜR KONTROLLIERTE SESSILE TROPFEN	73
4.2.1 Aufbau des capillary wave microbioreactor	74
4.2.2 Kapillarwellen-Moden in Resonanz auf der Flüssigkeitsoberfläche des cwMBR	75
4.2.3 Analyse des Mischvorgangs im cwMBR	80
4.2.4 Charakterisierung des Sauerstoffeintrags in den cwMBR	84
4.2.5 Grenzen der Oszillationsmischtechnik	88
4.2.6 Beeinflussung des Zellwachstums durch Anpassung der Oszillationseinstellungen im cwMBR	90
4.2.7 Kurzfazit zur vertikalen Oszillation des capillary wave microbioreactor	94
4.3 EINSATZ DES CWMBR-SYSTEMS FÜR ZELLBASIERTE ANALYSEN	96
4.3.1 Überwachung mikrobiellen Wachstums mittels Glucose- und Sauerstoffsensor bei der Kultiviere	ung in
chemisch definiertem Medium	100
4.3.2 cwMBR-Einsatz als analytisches Instrument für die tierische Zellkulturtechnik	103
5. ZUSAMMENFASSUNG UND AUSBLICK	109
6. LITERATUR	113
7. ANHANG	127