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Chapter 1: Prologue 
 

Agricultural farming practice in Germany has undergone changes towards less diverse 
systems with short rotations and few main crops during the last decades (Stein and 
Steinmann, 2018). Ensuring sustainability with simultaneously increasing yield potential is 
therefore one of the main challenges for future agriculture (Tilman et al., 2002). 
Nevertheless, yield progress has declined for several crops in the last years (Fischer and 
Edmeades, 2010). To further enhance the productivity of agricultural systems, the utilization 
of genetic resources and biodiversity services has to be improved.  

1.1  Legumes in cropping systems 

In this context, cropping of legumes can widen existing crop rotations and thus enhance the 
biodiversity of agricultural landscape. Additionally, fertilizer supported production increases 
and improvements in independence on fertilizer application is needed (Cazenave, 2018). 
Legumes with their capability of nitrogen (N) fixation are widely known to be more efficient 
in the use of soil N and the amount of additional fertilizer can therefore be reduced (Rubiales 
and Mikic, 2015). As a consequence, seed yield of various crops is increased when the 
preceding crop was a legume (Tanaka et al., 2007).  

Another advantage of legumes is their potential in ecological services (Altieri, 1999; Jensen 
et al., 2010; Köpke and Nemecek, 2010). The integration of legumes in crop rotations leads 
to ameliorated soil structure (Rochester et al., 2001), increased microbial activity 
(Biederbeck et al., 2005) and provision of habitats for beneficial insects (Crist et al., 2006). 

Cropping of legumes like pea and faba bean nowadays receives more interest in Europe due 
to its potential to replace soy bean as protein source for feed and food. To date, Europe is 
highly dependent on soy bean imports (de Visser et al., 2014; Jensen et al., 2010). 
Nonetheless, in Germany, legumes such as faba bean (Vicia faba L. var. minor) are rarely 
cultivated as crop rotations are based on cereals. Legumes generate higher complexity for 
farming management due to soil-borne diseases and possible nitrogen losses via leaching or 
emissions (Jensen et al., 2010; Reckling et al., 2016). 

However, high yielding and stress tolerant legume cultivars are scarce due to low investment 
in legume breeding (Reckling et al., 2016). There are ongoing studies by several research 
institutes to translate available genetic resources into novel winter-hardy varieties of faba 
bean (Link et al., 2010). Those varieties are suitable for a broad range of cropping areas with 
the ability to make use of a longer vegetation period (Link and Arbaoui, 2005). Frost 
tolerance plays a major role in breeding of these cultivars, while other factors influencing 
yield stability receive increasing importance. These are aspects regarding growth conditions, 
i.e. drought tolerance, as well as pest resistance (Khan et al., 2010; Torres et al., 2006). 

1.2  Intercropping systems 

At the aim of increasing biodiversity of cropping systems, intercropping of different species 
provides an opportunity to diversify crop rotations and agricultural landscape. Intercropping 
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systems are defined as growing different crops simultaneously in the same field in variable 
densities such as substitutive in alternating rows (Andrews and Kassam, 1976). Most often, 
mixtures of different species result in overyielding of the whole crop stand compared to pure 
stands such as due to increased interception of light under low interspecific competition 
(Bilalis et al., 2010; Jolliffe and Wanjau, 1999). Resilience of the system, weed and disease 
suppression and other factors are also enhanced by the complementarity of legumes and 
cereals (Carton et al., 2018; Hauggaard-Nielsen et al., 2008, 2001). This complementarity, 
particularly in differences in plant habitus and flowering characteristics, leads to enhanced 
biodiversity of associated flora and fauna (Altieri, 1999; Weißhuhn et al., 2017). 

Therefore, mixtures of arable crops are to a small share present in existing agricultural 
systems, especially in organic farms. Where reduced tillage and cropping of legumes is 
already applied, intercropping systems bear the potential for reduced pesticide inputs 
(Lemken et al., 2017; Theunissen, 1997). Species mixtures are very common in grassland 
systems because of yield stability under spatial and seasonal variations (Fowler, 1982). They 
improve forage quality and higher productivity at late stages of the season (Sleugh et al., 
2000). In those systems, nitrogen is used more effectively due to direct transfer from legume 
to non-legume as well as long term availability by mineralization of crop residues (Olesen 
et al., 2002; Xiao et al., 2004). That way, nitrogen losses are mitigated and the need for 
additional fertilizer input is reduced. This nitrogen is transformed into higher protein 
contents of the harvested products (Bedoussac and Justes, 2010). Also mobilization of soil 
phosphorus can be promoted in legume-based intercropping systems by associations of 
mycorrhiza with legume roots or by root-induced pH changes (Betencourt et al., 2012; Ren 
et al., 2013). 

In Germany, selection and breeding for legumes, e.g. faba bean and white clover, is usually 
performed in pure stands and not in mixtures. Comparing these two crop stands, trait 
expressions can vary and the best observed performance in pure stands can be different from 
the best performance in mixtures. This is due to the fact that beneficial effects of 
intercropping systems interfere with competition for growth resources such as light and 
water (Gao et al., 2009; Lithourgidis et al., 2011; Malézieux et al., 2009; Mushagalusa et al., 
2008). The performance of the system thus depends on environmental conditions and 
genotypic characteristics (Passioura, 2006). The suitability of a specific genotype is 
governed by complex interactions. Traits as winter hardiness, competition abilities in 
comparison to the non-legume, i.e. wheat and ryegrass, and in case of grassland the 
persistence of the sward therefore need to be tested in mixtures. Consequently, knowledge 
driven improvement of the performance of such intercropping systems is needed. 

1.2.1  Intercropping with faba bean 

The cultivation of faba bean is a promising option to replace the high input demanding 
soybean as locally produced protein source for food and feed (Köpke and Nemecek, 2010). 
The quality and protein content of cereals can be significantly enhanced when faba bean was 
intercropped with wheat or durum wheat (Ghanbari-Bonjar and Lee, 2002; Tosti and 
Guiducci, 2010). Moreover, the yield stability of intercropped faba bean is greater than that 
of sole cropped faba bean (Hauggaard-Nielsen et al., 2008). 
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Intercropping of winter types of faba bean and winter wheat have the potential of higher 
yields due to a longer growth period (López-Bellido et al., 2005) and a better weed 
suppression than spring types as early canopy closure to compete out emerging weeds 
(Haymes and Lee, 1999). Yet, the potential of intercropping autumn-sown faba bean and 
wheat is to date not fully explored as there are only very few winter-hardy varieties on the 
market, which are able to benefit from rainfall events during winter. On the German market 
there is only one winter hardy faba bean cultivar available (cv. Hiverna) (Bundessortenamt, 
2017). In order to grow faba bean in autumn-sown mixtures with winter wheat, breeding for 
more adapted cultivars is necessary. 

Especially drought adaptation is an issue of recent research as faba bean is a very sensitive 
crop to water limitations (Belachew et al., 2018; Khan et al., 2010, 2007). Consequently, 
genotype-specific properties of different faba been genotypes to water deficit can vary in 
their stress adaptation and drought tolerance (Mwanamwenge et al., 1998). This again would 
affect the performance of faba bean in the mixture as well as the performance of the 
intercropping system as a whole. 

Structural complexity of faba bean and wheat intercropping systems leads to weed 
suppression (Ghanbari-Bonjar and Lee, 2003). Nevertheless, weed suppression is less 
important for intercropping of winter varieties compared to spring varieties, due to its 
advantage of an early soil cover before weed emergence (Haymes and Lee, 1999). To avoid 
interspecific competition between faba bean and wheat it is necessary to choose tall growing 
wheat varieties for better light interception and less shading (Haymes and Lee, 1999). 
Otherwise, facilitated faba bean growth in intercropping suppresses the accompanying wheat 
(Lithourgidis and Dordas, 2010). If this is considered, positive effects like an increased 
proportion of nitrogen derived from N2 fixation in intercropping of faba bean and wheat 
compared to pure stands of faba bean are expected (Fan et al., 2006). 

1.2.2  Intercropping with white clover and chicory 

In grassland, higher plant species richness as present in intercropping systems, leads to an 
increased biomass production and less investment in root systems, resulting in overyielding 
of mixtures compared to monocultures (Bessler et al., 2009). Intercropping is therefore a 
common practice worldwide for pastures, forage and biomass production. Environmental 
benefits include an increase in biodiversity and a reduced soil erosion by a permanent ground 
cover (Halty et al., 2017) as well as a decreased risk for annual weeds due to dense vegetation 
structure and repeated cutting (Weißhuhn et al., 2017). Thereby, high proportions of grasses 
enhance carbon sequestration by belowground biomass, while high proportions of legumes 
accumulate more nitrogen (McElroy et al., 2016). This nitrogen can be transferred to non-
legumes, especially grasses with fibrous roots (Pirhofer-Walzl et al., 2012). 

White clover (Trifolium repens L.) as a fast growing species is a strong competitor in 
grassland systems and therefore avoids weed invasion, leading to increased yield stability 
(Frankow-Lindberg et al., 2009). Over several years it was shown by Høgh-Jensen and 
Schjoerring (1997) that after establishment of intercropping, white clover substantially 
contributes to nitrogen supply for perennial ryegrass in an increasing manner. Additionally, 
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interspecific competition with the accompanying species and seasonal water deficit can lead 
to declined proportions of white clover in intercropping systems (Hutchinson et al., 1995). 

In this context, including species with deep root systems leads to enhanced water availability 
and in the long term to soil aeration and drainage (Weißhuhn et al., 2017). Deep rooting 
species such as chicory (Cichorium intybus L.) with its tap root system have the capability 
to take up water from deep soil layers and transfer it to the shallow rooting species (Skinner, 
2008). Chicory is used as vegetable but can also be integrated as forage crop into grassland 
mixtures as chicory has a high yield potential (Hume et al., 1995). 

1.3  Drought and water use 

The efficient use of water resources is of particular importance under current shifts in 
precipitation patterns towards extreme weather events (Brouder and Volenec, 2008). This 
requires sustainable agricultural systems with improved stress tolerance to excess water as 
well as water scarcity. The latter will be the focus of the present research. In European 
agricultural systems, the water deficit mostly occurs in a range where plants are still able to 
maintain leaf water potential and turgor pressure due to stomatal adjustment, root 
development and reduction in leaf growth (Tardieu, 1996). Thereby transpiration is reduced 
and water acquisition increased. Yet, these processes lead to reduced yield production (Fita 
et al., 2015). 

For cropping systems with faba bean as well as white clover, water is often the limiting 
resource (Hutchinson et al., 1995; Jensen et al., 2010). However, legume-based 
intercropping systems may increase the efficiency of light and water use due to differing 
stand architecture and alternate rooting (Morris and Garrity, 1993). This way, they contribute 
to a better realization of yield potential of the crops even under drought conditions.  

The yield potential under unfavorable growth conditions can generally be achieved by the 
adaptation derived from genetic variance transferred into productivity (Boyer 1982). Lobell 
et al. (2014), however, reported that an increment in yields by breeding for ideal conditions 
is accompanied by increased sensitivity to drought stress under high vapor pressure deficit. 
As a consequence, cropping systems nowadays need to gain more stability towards varying 
climatic conditions. 

Breeding strategies for e.g. white clover aim at realizing genetic potential by understanding 
physiological processes in terms of adaptation to water deficit (Jahufer et al., 2002). 
Consequently, in order to ensure stable crop production under water limitations, breeding of 
crops with higher drought tolerance and improved water use efficiency is necessary (Chaerle 
et al., 2005).  

1.3.1  Water use efficiency on the physiological level 

Water use efficiency (WUE) can be defined on various scales, depending on the time frame 
and plant component referred to. It is determined on the leaf level, on the whole plant level 
and on the crop stand level as general ratio of carbon gain per water loss. On the levels of 
whole plants as well as crop stands, most definitions of water use efficiency are either related 
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to biomass production and water consumption in various time intervals or to gas exchange 
of CO2 and water vapor. 

Instantaneous WUE is related to photosynthetic carbon assimilation and water loss via 
transpiration, which are conversely regulated by stomatal adjustment (Gong et al., 2011). 
Converted to instantaneous measurements of crop stands in the field, this ratio is expressed 
as net ecosystem exchange of CO2 (NEE) per evapotranspiration (ET). A time-integrated 
approach related to carbon assimilation and transpiration is the stable isotope discrimination 
against 13C, an indirect parameter to estimate instantaneous WUE (Tambussi et al., 2007).  

These measurements of WUE are only reflecting short time intervals and therefore don’t 
include processes of unproductive water loss e.g. during the night. Consequently, WUE 
evaluated within a short time frame does not necessarily reflect time-integrated WUE, 
calculated as ratios of biomass per water consumption (Jákli et al., 2016; Tränkner et al., 
2016). Here, also parameters such as leaf anatomy, biochemical processes in carbon fixation 
and night-time respiration contribute to the characteristics of the WUE (Jákli et al., 2017). 

1.3.2  Water use efficiency of the crop stand via remote sensing 

Information about the production of the cropping system and its water use can be provided 
by non-invasive techniques such as remote sensing. These techniques are applied in fast 
screenings of crop stands (Candiago et al., 2015) as it is needed for example as phenotyping 
tool within the breeding process. The generated information is then used as selection 
criterion to differentiate genotypes under stress conditions or in various environments 
(Fiorani and Schurr, 2013).  

Other areas of application are the use of near-infrared spectroscopy to predict growth 
conditions as the carbon and nitrogen content in the soil (Zhang et al., 2017). Furthermore, 
plant traits for the productivity of the crops in environments with limited resources can be 
detected (Fiorani and Schurr, 2013). Sensors mounted on tractors then determine the spatial 
and temporal optimized donation of fertilizer or pesticides to optimize plant growth. The 
implementation of indices as the Normalized Difference Vegetation Index (NDVI) in this 
context support the early detection of stress symptoms caused by diseases or other stressors 
(Behmann et al., 2015).  

The NDVI is calculated from light reflectance in the red and the near-infrared range. In the 
range of the visible light, reflectance is dependent on the absorption of the pigments, 
foremost chlorophyll, while reflectance in the near-infrared is determined by leaf structure 
(Carter and Knapp, 2001).  

A more distant approach of remote sensing techniques is the use of unmanned aerial vehicles 
(UAV) in order to estimate yield, species composition and nutrient status of arable and 
grassland crops (Bendig et al., 2014; Möckel et al., 2014; Möckel et al., 2016). Here, thermal 
cameras can be used in addition to the abovementioned spectral sensors. These thermal 
cameras measure the emittance of infrared radiation, detecting the surface temperature and 
thus the transpiration of crops (Chaerle and Van Der Straeten, 2000).  

The canopy surface temperature in the field is highly depending on weather conditions 
(Mahlein, 2016): wind removes humidity gradient around stomata and increases 
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transpiration, whereas precipitation leads to elevated air humidity and wet surfaces, thus 
decreasing vapor pressure deficit and reducing transpiration. Elevated air temperature in 
combination with relative humidity on the other hand increases transpiration demand of the 
crops. 

Consequently, phenotyping of crop stands for productivity as estimated by NDVI and water 
use as estimated by thermography bear the potential to estimate their water use efficiency 
and to characterize the system’s sustainability. Evaluated under different growth conditions, 
e.g. several sites and years, these image-based parameters can generate a better 
understanding of intercropped species and their sustainable production systems.  

1.4  Objectives and structure of the thesis 

The breeding of new cultivars of crops is traditionally performed in pure stands. This way, 
the performance of novel genotypes in intercropped stands and responsible traits are not 
considered. Consequently, growers of arable crops lack information for best management 
practice of these mixtures. In this framework, the project IMPAC³ (Novel genotypes for 
mixed cropping allow for improved land use across arable land, grassland and woodland) 
aims at improving knowledge about species mixtures for future breeding of cultivars suitable 
for intercropping systems. 

For the aspect of genotype-specific performance under water limitations, the effects of water 
partitioning between component crops were evaluated. In this regard, investigations on the 
efficiency in water use of intercropped vs. pure stands of species mixtures were conducted 
in arable land and grassland. Due to the complexity of intercropping systems, it is necessary 
to assess parameters for water use and drought stress tolerance on different scales. 
Biochemical and physiological mechanisms of plants grown under controlled conditions in 
the greenhouse provide precise information about responses of the crops to water scarcity. 
In contrast, data assessment of field experiments considers more complex growth conditions 
such as weather events, variations in soil structure and occurrence of pests. These findings 
of both approaches need to be related to each other to obtain detailed understanding of the 
dynamics in intercropping systems. 

Due to its compatible use of resources, intercropping of multiple species is likely to enhance 
the WUE. This especially accounts for seasons with less water availability. Although there 
are several studies investigating water use of single cropped faba bean in arable systems (e.g. 
Abid et al., 2017; French, 2010; Siddiqui et al., 2015), little is known about species 
interactions in multi species crop stands. This thesis therefore aims at improving the current 
knowledge on interaction effects of cropping system, species and genotypes with respect to 
their water use.  

In a set of greenhouse experiments, reported in the second chapter of this thesis, contrasting 
genotypes of winter faba bean were tested under various conditions. The aim was to evaluate 
their genotype-specific physiological properties and their suitability for intercropping with 
winter wheat. Growth conditions varied in terms of water availability and fungi inoculation 
in order to identify stress adaptation with regard to the drought tolerance and the plant 
microbiome. 
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In field experiments, various genotypes of winter faba bean as well as white clover in pure 
stands and intercropped stands with non-legumes (i.e. winter wheat; ryegrass and chicory) 
were evaluated. In the third chapter, different approaches were used in order to estimate 
whether the water use and the water use efficiency (WUE) are improved in intercropping 
systems. These evaluations were additionally compared to non-legumes where nitrogen 
fertilizer was applied. In this context, it was tested whether intercropping systems have the 
potential to reduce nitrous oxide emissions in contrast to conventional cropping systems 
(chapter four). In the same field experiments, drone-based remote sensing approaches of 
spectral and thermal imaging were applied to observe differences in growth development 
and water use of the crop stands (chapter five).  

Overall, it was to test whether intercropping of the leguminous and non-leguminous species 
has advantages in comparison to pure stands. Therefore, the cropping systems in general as 
well as the various genotypes in particular were observed under contrasting growth 
conditions in order to reveal differences in the performance. 
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