

Costanza Rodda (Autor) Gravity wave emission from jet systems in the differentially heated rotating annulus experiment

https://cuvillier.de/de/shop/publications/8132

Copyright:

Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de

Contents

Α	ostract	xiii
1	Introduction 1.1 Motivation and Problem Statement	1 . 1
	1.1.1 General circulation	. 4
	1.1.2 Gravity waves emitted from jets and fronts	. 5
	1.2 Gravity waves in faboratory and numerical experiments	. (
	1.9 Outline	. 10
2	Theoretical background	13
	2.1 Motion in a rotating fluid	. 13
	2.2 Motion in a stratified liquid	. 15
	2.3 Fundamental equations	. 16
	2.3.1 Geostrophic and thermal wind balance	. 17
	2.3.2 Quasi-Geostrophic motion	. 19
	2.4 Baroclinic waves	. 21
	2.4.1 Inviscid theory–Eady model	. 22
	2.5 Internal gravity waves—theory	. 26
	2.5.0.1 Linear equations for purely gravity waves	. 27
	2.5.0.2 Linear equations for purely inertial waves	. 29
	2.5.0.3 Linear equations for inertial-gravity waves	. 30
	2.6 Internal gravity waves—sources and propagation mechanisms	. 30
	2.6.1 Internal gravity waves sources	. 31
	2.6.1.1 Topography	. 31
	2.6.1.2 Convection	. 33
	2.6.1.3 Spontaneous imbalance	. 34
	$2.6.1.4$ Shear instability \ldots	. 37
	2.6.2 Gravity waves propagation-wave capture	. 37
3	Laboratory experiment set-ups	39
Ű	3.1 Differentially heated rotating annulus - a bit of history	39
	3.1.1 From the atmosphere to the lab - dynamical similarity	40
	3.1.2 Flow regime in the rotating annulus	. 10
	3.2 Rotating annulus: two experimental apparatuses to study IGWs	. 46
	3.2.1 Barostrat	. 54
	3.3 MSGWs tank	. 60
	3.3.1 Rotation unit and water tank	. 60
	3.3.2 Temperature devices	. 62
	3.3.3 Temperature difference and heat loss through the walls	. 63

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

Contents

3.3	.4 Modified configurations 66 3.3.4.1 Inner metallic wall 66 3.3.4.2 Upper lid 68
Measu 4.1 Ter 4.1 4.2 Vei 4.2 4.2	rements techniques71mperature measurements71.1 Infrared thermography71.2 Temperature sensors75locity measurement76.1 PIV set-up764.2.1.1 Camera764.2.1.2 Laser illumination774.2.1.3 PIV particles78.2 PIV data processing784.2.2.1 PIV error estimation854.2.2.2 PIV resolution85
Data a 5.1 Da 5.1 5.2 Da 5.2 5.2 5.2 5.2	malysis 87 ta analysis methods for large scale flow 87 .1 Harmonic analysis 88 .2 Empirical orthogonal functions 88 .2 Empirical orthogonal functions 89 .1 Large-scale/small-scale spatial separation 90 .1 Large-scale/small-scale spatial separation 91 .3 Spectra 92 5.2.3.1 Two dimensional Fourier transform 92 5.2.3.2 Energy spectra-Helmholtz decomposition 93
Barost 6.1 Set 6.2 Pro 6.2 6.3 Inc 6.3 6.3	grat experiment 97 z -up and measurements 98 z -up add measurements 99 z -up add measurements 105 z -up add measurements 107 z -up add measurements 115 z -up add measurements 115
Atmos 7.1 La 7.1 7.1 7.1 7.2 Sm 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	phere-like differentially heated annulus117rge-scale flow117.1 Regime diagram118.2 Comparison temperature and N 120.3 Spatial structure of N/f and gravity wave trapping122.4 First results with the modified configuration127all-scale waves131.1 Properties of the waves131.2 IGWs dispersion relation133.3 Wave amplitude scaling134.4 Generation mechanism144.5 Propagation and wave capture145
	$\begin{array}{c} 3.3\\ \textbf{Measu}\\ 4.1 \text{Ter}\\ 4.1\\ 4.1 \text{Ter}\\ 4.2\\ \text{Vei}\\ 4.2\\ \textbf{Mathematical}\\ 5.2\\ \textbf{Mathematical}$

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. Es gilt nur für den persönlichen Gebrauch.

$\mathbf{i}\mathbf{x}$

7.2.6 Comparison with numerical simulations – small-scale waves 14 7.2.7 Energy spectra and comparison with the atmosphere 14	46 48
$7.2.7.1$ Atmospheric spectra $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 14$	18
7.2.7.2 Experimental spectra	19
8 Conclusions 15	57
8.1 Barostrat experiment	58
8.2 Atmosphere-like tank	30
8.3 Open questions and future work	32
A Appendices 16	53
A.1 Calculation of the determinant of the matrix	33
A.2 Dispersion relation	35
A.3 Ray equations	36
A.4 Following the wave	37
References 17	$^{\prime}1$

List of Figures

1.1 Residual mean circulation	3
1.2 Atmospheric general circulation	5
1.3 Gravity waves generated by jets and fronts	6
2.1 Local Cartesian coordinate system of reference on a spherical Earth. $\ .\ .\ .$	14
2.2 Schematic representation of force balances	19
2.3 Schematic depiction of jet stream	21
2.4 Sketch of the mechanism of the sloping convection	22
2.5 Properties of the Eady modes	24
2.6 Satellite image from NASA Earth Observatory (2005) of atmospheric in- ternal waves behind the Amsterdam island located in the south of Indian	
Ocean	26
2.7	28
2.8	30
2.9 Schematics illustration internal waves generation processes	31
2.10 Stationary 2D flow over a gaussian-shaped hill.2.11 Gravity waves generated by rapidly rising deep convection over the ocean	32
(picture from NASA Earth Observatory (2009)).	33
2.12 Sketch of the elastic pendulum	35
3.1 Laboratory experiment-Earth's atmosphere analogy	39
3.2 Dependency of the Burger number on the azimuthal wavenumber3.3 Schematic diagram of the different types of flow developing in a rotating	41
fluid subject to axisymmetric differentially heating and cooling $\ \ \ldots \ \ldots$.	43