


Experimental study of the zonal-flow dynamics
in the magnetised plasmas of the stellarator experiment TJ-K

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Experimental study of the zonal-flow

dynamics in the magnetised plasmas

of the stellarator experiment TJ-K

Von der Fakultät Energie-, Verfahrens- und Biotechnik
der Universität Stuttgart

zur Erlangung der Würde eines Doktors der
Naturwissenschaften (Dr. rer. nat) genehmigte Abhandlung

vorgelegt von

Bernhard Schmid

aus Neu-Ulm

Hauptberichter: Prof. Dr. U. Stroth
Mitberichter: Prof. Dr. J. Starflinger

Tag der mündlichen Prüfung: 13.04.2018

Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie der
Universität Stuttgart

2018

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



  

 

 

 

 

 

 

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der

1. Aufl. - Göttingen: Cuvillier, 2019
Zugl.: Stuttgart, Univ., Diss., 2018

CUVILLIER VERLAG, Göttingen 2019
Nonnenstieg 8, 37075 Göttingen
Telefon: 0551-54724-0
Telefax: 0551-54724-21
www.cuvillier.de

Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung
des Verlages ist es nicht gestattet, das Buch oder Teile
daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie)
zu vervielfältigen.
1. Auflage 2019

aus nachhaltiger Forstwirtschaft.

ISBN 978-3-7369-9993-0
eISBN 978-3-7369-8993-1

Gedruckt auf umweltfreundlichem, säurefreiem Papier

Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Bibliografische Information der Deutschen ationalbibliothekN

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Zusammenfassung

Die Einschlussqualität von Plasmen in toroidalen Magnetfeldern wird maß-
geblich durch den turbulenten Transport senkrecht zum Magnetfeld limi-
tiert. Zonalströmungen sind dabei für die Fusionsforschung von großer Be-
deutung, da vermutet wird, dass sie mit der Bildung von Transportbarrieren
in Zusammenhang stehen. Diese mesoskopischen Scherströmungen tragen
auf Grund ihrer Symmetrie nicht zum turbulenten Transport bei und kön-
nen durch Verscherung von Wirbeln den radialen Transport unterdrücken.
Dabei werden Zonalströmungen in einem Selbstorganisationsprozess von der
umgebenden Plasmaturbulenz generiert indem Wirbel durch die Zonalströ-
mung verkippt werden, was die Scherströmung weiter antreibt. Ein Maß
für die Verkippung ist der sogenannte Reynolds-Stress, wobei der radiale
Gradient des Flussflächenmittels die Antriebskraft der Zonalströmung dar-
stellt. Die Dynamik gleicht dabei einer Räuber-Beute-Beziehung, bei der die
Driftwellen die Beute für die Zonalströmungen sind. In Fusionsexperimen-
ten konnte beim spontanen Übergang in ein verbessertes Einschlussregime
(H-Mode) ein verstärktes Auftreten von Zonalströmungen mit den charakte-
ristischen Räuber-Beute-Oszillationen nachgewiesen werden. Die Rolle und
die genaue Wirkungsweise der Zonalströmungen bei dieser Bifurkation des
Plasmaeinschlusses sind jedoch ungeklärt. Ein tieferes Verständnis der Phy-
sik der Zonalströmungen, speziell in komplexen Magnetfeldgeometrien, ist
daher wünschenswert.

Diese Arbeit beschäftigt sich vorwiegend mit der Untersuchung des An-
triebsmechanismus von Zonalströmungen, im Speziellen mit der Abhängig-
keit von der Magnetfeldgeometrie und dem Einfluss der Kollisionalität. Da-
zu wurden Messungen am Stellarator-Experiment TJ-K durchgeführt, in
Plasmen, die dimensional ähnlich zu Randplasmen von Fusionsexperimen-
ten sind. Die relativ geringen Plasmatemperaturen erlauben den Einsatz
von Langmuir-Sonden im gesamten Einschlussgebiet. Mit einem poloida-
len Sonden Array, bestehend aus 128 Sonden mit je 32 Sonden auf vier
benachbarten Flussflächen, können Dichte- und Potentialfluktuationen mit
hoher räumlicher und zeitlicher Auflösung gleichzeitig über den gesamten
poloidalen Umfang aufgenommen werden. Daraus lassen sich Geschwindig-
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keitsfluktuationen und der Reynolds-Stress, sowie dessen radiale Ableitung,
direkt bestimmen. Dies bietet die Möglichkeit den Antrieb der Zonalströ-
mungen durch Reynolds-Stress auf den Einfluss der Magnetfeldparameter
hin zu analysieren. Für die Untersuchung der Stoßratenabhängigkeit des An-
triebs wurde eine Vielzahl an Messungen bei unterschiedlicher Kollisionalität
durchgeführt, was die Kopplung zwischen Dichte und Potential maßgeblich
beeinflusst. Über die Variation der Ionenmasse von Wasserstoff bis Kryp-
ton, des Drucks und der Heizleistung kann die Kollisionalität C über vier
Größenordnungen kontinuierlich vom adiabatischen Regime (C � 1) ins hy-
drodynamische Regime (C � 1) verändert werden.

In dieser Arbeit wurde gezeigt, dass Zonalströmungen gleichverteilt als po-
sitive und negative homogene Potentialstörungen auf einer gesamten Fluss-
fläche mit schmaler radialer Ausdehnung auftreten, wobei der Großteil der
spektralen Leistung auf Frequenzen unter 8 kHz begrenzt ist. Ein teilweise
auftretender Beitrag bei höheren Frequenzen ist gering, könnte aber auf die
Existenz einer geodätisch akustischen Mode hindeuten.
Der Reynolds-Stress ist nicht räumlich homogen verteilt, sondern ist be-
sonders stark in Bereichen negativer normalen Feldlinienkrümmung κn und
positiver geodätischer Feldlinienkrümmung κg. Dies gleicht der Verteilung
des turbulenten Transports der eine ähnliche konzeptuelle Form aufweist.
Zusätzlich hat die magnetische Verscherung (integrierte und lokale Versche-
rung) einen Einfluss auf die Verkippung der Wirbel und somit auf den
Reynolds-Stress. Quantitativ wurde gezeigt, dass der Reynolds-Stress aus-
reicht um die Zonalströmung anzutreiben. Die 3-Wellenkopplung ist stark
während dem Auftreten der Zonalströmung und der direkte Energietransfer
kleiner Skalen in die Zonalströmung bestätigt das Bild des nichtlokalen An-
triebs im k-Raum.
Die Effektivität des Antriebsmechanismus hängt von der Dichte-Potential-
Kopplung und damit in erster Linie von der Kollisionalität ab. Durch die
Analyse von Reynolds-Stress und dichtebasiertem Pseudo-Reynolds-Stress
zeigt sich, dass bei geringer Kollisionalität die Kopplung zwischen Dichte
und Potential zunimmt. Dabei steigen sowohl der Energietransfer in die Zo-
nalströmung als auch die relative Zonalströmungsleistung stark an. Ein An-
teil der Zonalströmung an der Gesamtleistung der Turbulenz von bis zu 29%
wird erreicht. Damit bestätigen die Messungen einen grundlegenden Mecha-
nismus der Plasmaturbulenz und belegen die Bedeutung der Kollisionalität
für die Entstehung großskaliger Strukturen in toroidal eingeschlossenen Plas-
men.
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Abstract

The confinement quality of plasmas in toroidal magnetic fields is mainly lim-
ited by the turbulent transport perpendicular to the magnetic field. Zonal
flows play an important role in fusion research as they are thought to be
connected to the formation of a transport barrier in the edge of the confined
plasma. Because of their symmetry, these mesoscale turbulent structures
do not contribute to turbulent cross-field transport and can suppress ra-
dial transport by shearing off turbulent eddies. Like in a self-organisation
process, the zonal flows are generated by the ambient turbulence itself as
turbulent eddies are tilted by the shear flow. For tilted vortices the so-called
Reynolds stress is non-zero and the radial gradient of this flux surface aver-
aged quantity drives the zonal flow. The dynamics resemble a predator-prey
relationship, where the drift waves are the prey for the zonal flow. At the
spontaneous transition to an improved confinement regime (H-mode), an
increased zonal flow occurrence, with the characteristic predator-prey os-
cillation, was indeed confirmed by many experiments. But the mechanism
behind the occurrence of this bifurcation in the plasma confinement is still
not fully understood. Therefore, a deeper understanding of the zonal flow
physics, especially in complex magnetic field geometries, is highly desirable.

This work concentrates on the investigation of the Reynolds stress drive
of zonal flows with its connection to the geometry of the confining magnetic
field and the influence of the collisionality. The measurements for this work
have been conducted at the stellarator experiment TJ-K in plasmas dimen-
sionally similar to fusion edge plasmas. The low temperatures allow the
use of Langmuir probes in the entire confinement region. With a poloidal
probe array, consisting of 128 Langmuir probes with 32 probes on each of
four neighbouring magnetic flux surfaces, density and potential fluctuations
can be acquired with high spatial and temporal resolution on the complete
poloidal circumference. Thus, velocity fluctuations as well as the turbulent
Reynolds stress, and its gradient, are available. This gives the possibility
to study the Reynolds stress drive of zonal flows with respect to the influ-
ence of the magnetic field parameters. For the investigation of the collisional
dependence of the driving mechanism, a multitude of measurements at dif-
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ferent collisionality, which determines the coupling strength between density
and potential, has been performed. By changing the ion mass from hydrogen
to krypton, the pressure, and the heating power, the collisionality C can be
continuously varied by about four orders of magnitude from the adiabatic
regime (C � 1) to the hydrodynamic regime (C � 1).

In this work it was shown that zonal flows appear equally distributed as
positive and negative zonal potential fluctuations on a whole flux surface
with narrow radial extent, where the main spectral power is located be-
low 8 kHz. A contribution at higher frequencies is small but could indicate
the existence of a geodesic acoustic mode.
The Reynolds stress is not homogeneously distributed but concentrated in
regions with negative normal magnetic curvature κn and positive geodesic
curvature κg. This is similar to the distribution of the turbulent transport,
which is plausible by reason of similar conceptual form of both quantities.
Also, integrated magnetic shear as well as local magnetic shear have an in-
fluence on the tilt of the turbulent structures and, therefore, on the Reynolds
stress. It is shown that the Reynolds stress drive is large enough to quant-
itatively explain the acceleration of the flow. The three-wave interaction is
strong during the zonal flow occurrence, and the direct energy transfer from
small scale structures into the zonal flow supports the picture of a nonlocal
driving mechanism in k-space.
The efficiency of the driving mechanism is determined by the density-poten-
tial coupling and, therefore, by the collisionality. By analysing Reynolds
stress and pseudo-Reynolds stress, it is found that, for decreasing collision-
ality, the coupling between density and potential increases. As a result, the
nonlinear energy transfer into the zonal flow, as well as the relative spec-
tral power of the zonal flow, strongly increases. The zonal flow contribution
to the total turbulent spectral power reaches values of up to 29%. This
is a direct test of a fundamental mechanism in plasma turbulence and also
represents a verification of the importance of collisionality for large-scale
structure formation in magnetically confined toroidal plasmas.
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Chapter 1

Introduction

In order to achieve large scale energy production from fusion reactions, plas-
mas with a mix of deuterium and tritium are heated to temperatures of
100 million degrees. These temperatures are needed for the particle to over-
come the Coulomb barrier. Such fusion plasmas are confined by strong
magnetic fields, build in toroidal geometry in order to avoid losses parallel
to the magnetic field lines. Important for a fusion reactor is the confinement
of the energy measured with the confinement time τE , which, together with
plasma density n and temperature T , forms the triple product. For igni-
tion, where a self-sustained burning fusion plasma is reached, this quantity
has to fulfil the Lawson criterion nTτE > 4 · 1021 m−3 keV s [1]. However,
achieving ignition has been proven to be a quite challenging task. Increased
heating power leads to higher temperatures but it also entails turbulent fluc-
tuations and turbulent transport. Turbulence reduces the confinement time
and severely limits the performance of a future reactor.1

The search for improved confinement regimes, which will bring the plasma
closer to ignition, has long been subject to fusion research [3, 4]. Enhanced
performance modes can be achieved due to specific heating or fuelling scen-
arios and careful wall preparation [5]. With peaked density profiles the dens-
ity gradient decay length is reduced below a critical value which can stabilise
ion temperate gradient instabilities. In 1982 a new type of improved con-
finement was discovered at the ASDEX tokamak where the transition to a
high confinement regime (H-mode) appeared spontaneously [6–8]. Due to a
transport barrier in the edge of the confined plasma [9], the turbulent trans-
port was strongly reduced and the energy confinement time doubled. The
transport reduction can be explained by a flow shear layer which hinders
turbulent outward transport due to the decorrelation of turbulent struc-

1The confinement time scales negative with heating power (P−0.5) [2] which results in
a low confinement regime (L-mode) and leaves the triple product mostly unchanged.
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Chapter 1 Introduction

tures (BDT-criterion) [10–13].2 But the mechanism behind the occurrence of
the bifurcation in the confinement time is still not fully understood. Turbu-
lence self-generated zonal flows might play an important role in this H-mode
transition [14–18]. These transient shear flows can partially suppress turbu-
lent transport which would in turn increase the ion pressure gradient and
thus the background shear flow connected with it. Such behaviour, with a
limit cycle oscillation in the intermediate phase between the low and high
confinement modes, was indeed confirmed by many experiments [17, 19–25].
However, the physics behind the LH-transition remains a controversial is-
sue as it was found in [26, 27] that the measured turbulent drive was too
small to accelerate a zonal flow. And a more resent study suggests that the
turbulence zonal flow interaction might not substantially contribute to the
LH-transition [28]. Owing to these contrary positions a deeper understand-
ing of the physics related to the drive of zonal flows is highly desirable.

Zonal flows are a phenomenon known before from fluid turbulence [29–
31]. The band like structures on Jupiter are probably the most prominent
example, but zonal flows also appear in the earth’s atmosphere (jet streams)
and oceans. On Venus such jets can exhibit velocities faster than the rotation
of the planet (super-rotation), and the zonal flows in the interior of the sun
are linked to the solar dynamo. Their existence in various physical systems
shows that they are a rather universal phenomenon of 2D turbulence.
In toroidal fusion experiments the plasma is confined with an axial (tor-
oidal) magnetic field where the turbulent fluctuations extent far along the
field lines and the plasma turbulence is thus quasi two-dimensional. With
the additional poloidal magnetic field component, which is needed for stable
confinement, the field lines and the elongated turbulent structures are twis-
ted around the torus. The present studies are carried out on a stellarator
device where the magnetic field is entirely generated by external field coils
and the plasma has a three-dimensional shape. It has been shown that the
turbulence in this device resembles that expected in tokamaks, which, in
contrast to stellarators, are axisymmetric but need a strong externally in-
duced plasma current to generate part of the field. An illustration of these
two confinement concepts is shown in figure 1.1.

Zonal flows exhibit unique properties compared to other turbulent modes.
With a homogeneous potential structure along the flux surfaces (called zonal
potential) and a finite radial extent zonal flows are intrinsically connected to

2Turbulent transport is effectively reduced when the shearing rate ωE×B is larger than
the maximal linear growth rate γmax: |ωE×B | > γmax.
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TokamakStellarator

Figure 1.1: Illustration of the two major toroidal magnetic confinement concepts.
The combination of toroidal and poloidal magnetic field results in twisted field
lines which span the flux surfaces, enclosing volumes of constant magnetic flux.
Closed flux surfaces, which do not touch the wall, constitute the confinement region,
otherwise the scrape-off layer (SOL). The complex coil geometry of stellarators is
reflected in the shape of the plasma. [32]

a zonal shear flow [33]. Because of their symmetry, these mesoscale turbu-
lent structures do not contribute to turbulent cross-field transport and can
suppress radial transport by shearing off turbulent eddies. Like in a self-
organisation process, the zonal flow is generated by the ambient turbulence
itself with a vortex-thinning mechanism [34, 35]. The vortices are tilted and
drive the shear flow, which leads to a self-amplification of the zonal flow [36–
38]. For tilted vortices the so-called Reynolds stress R = 〈ṽr ṽθ〉 is non-zero
and the radial gradient of this flux surface averaged quantity, as indicated
by the brackets, drives the zonal flow. From a theoretical point of view,
mostly the physical picture known from fluid mechanics can be transferred
to plasma physics. But plasma turbulence, especially in complex geomet-
ries, has its own characteristics and phenomena. In contrast to neutral fluids,
e.g., the zonal flow drive in plasmas should crucially depend on the cross-
coupling of the potential and the density structures. The key parameter in
this system is the collisionality C, defined as the normalised electron collision
frequency [39]. For the adiabatic case (C → 0) both quantities are closely
coupled, while in the hydrodynamic case (C → ∞) density and potential
decouple and the zonal flow growth is broken.
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Chapter 1 Introduction

processes, like Reynolds stress drive, limit cycle oscillations, and transport
suppression, have been demonstrated [40, 41]. However, the experimental
verification remains limited as such measurements were mostly restricted
to single points in the plasma and do not regard the three-dimensional dy-
namic of the zonal flow. The complexity of the magnetic field, especially in
stellarators, with the consequences for the zonal flow are, up to now, rarely
studied in experiment and theory. And a realistic treatment of the geometry
in turbulence simulations poses a challenging task which still cannot fully
be mastered.

The objective of the present thesis is a detailed analysis of the zonal flows
in a toroidally confined plasma with a special focus on the driving mechanism
and its collisional dependence. This includes the direct study of the Reyn-
olds stress, and its gradient, together with the connected energy transfer
between turbulence and zonal flow. The relevant parameters are measured
on the complete poloidal circumference of the confined plasma which allows
studying the complex dependency on the magnetic field.
To investigate turbulence, especially the Reynolds stress, multiple measure-
ment points at high time resolution are required which is beyond the limits
of the actual diagnostic possibilities in fusion plasmas. Toroidal experiments
with low temperature plasmas can fill the gap as their whole confinement
region is accessible to probe diagnostics. Probes posses a very high time
and a relatively high spatial resolution at the same time. The actual plasma
parameters are of course not in the range of those in a fusion plasma, but
operation regimes can be chosen such that the normalised parameters rel-
evant for turbulence are comparable to those in the edge region of large
fusion experiments. With their flexibility such experiments are predestined
for basic research where local magnetic field effects can be very well stud-
ied. The experiments for this work have been conducted at the stellarator
experiment TJ-K where multi-probe configurations have been exploited to
resolve turbulent fluctuations.

This work is organised as follows. The theoretical background of drift
waves, the predominant micro instability in the experiment TJ-K, and zonal
flows is given in chapters 2 and 3, respectively. This is followed by the
description of the techniques of data analysis (Chap. 4), especially the cal-
culation of the energy transfer, and the experimental setup (Chap. 5). All
measurements in this work have been performed with newly constructed lim-
iters which result in well-defined boundary conditions. The characterisation
of the achieved plasma parameters is presented in chapter 6. This is the
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The basic concept of large-scale structure formation is clear and elementary
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the occurrence of the zonal flow is studied in detail where chapter 7 addresses
basic properties of the zonal flows. With the conditional averaging technique
the temporal evolution can be visualised. In chapter 8 the connection of the
Reynolds stress to the magnetic field geometry is studied in detail. Using
non-linear analyses techniques, the different energy transfer channels con-
nected with the zonal flow development are studied in chapter 9. Finally, in
chapter 10 the results are summarised and discussed with regard to possible
consequences of local measurements and the conclusions are presented.

17

foundation for the scaling analysis applied throughout the work. Afterwards
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Chapter 2

Plasma turbulence

Turbulence is ubiquitous in nature with a variety of phenomena. This chap-
ter introduces the basic description and characteristics of fluid (Chap. 2.1)
and plasma turbulence (Chap. 2.2–2.4). The description is mostly limited to
2D turbulence which is the relevant one for turbulence in fusion plasmas. The
fundamental equations introduced here are the basis for the consideration of
large structure formation shown in the following chapter.

2.1 Principles of turbulence

In a first part (Sect. 2.1.1) basic formulas, as the Navier-Stokes equation and
the vorticity equation, are collected. This is followed by the identification
of the conservation laws (Sect. 2.1.2) which entails the turbulent cascades
(Sect. 2.1.3) with completely different manifestations in two and three di-
mensions.

2.1.1 Basic equations

The Navier-Stokes equation [42, 43] is the momentum balance equation for a
Newtonian fluid, which, for a complete description, has to be complemented
by the continuity equation and an equation for the energy. For an incom-
pressible fluid, with constant mass density and viscosity, it is an extension
of the Euler equation by internal friction and describes the evolution of a
fluid element in a divergence free velocity field v,

Dtv ≡ ∂

∂t
v + v · ∇v = −∇p+ μ∇2

v , (2.1)

∇ · v = 0 . (2.2)

The mass density ρm is thereby included in the pressure p and in the (kin-
ematic) viscosity μ. The differential operator Dt is the hydrodynamic de-
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Chapter 2 Plasma turbulence

rivative, or material derivative, and describes the rate of change in the co-
moving frame of reference. This system of second order nonlinear partial
differential equations has to be supplemented by appropriate boundary and
initial conditions for the velocity and pressure field, which, at least for two
dimensions [44], determine a unique solution.1 If the nonlinear convective
term (second term on the left hand side) can be neglected, e.g. if the vis-
cosity is very high, equation (2.1) reduces to a simple diffusion equation
(Stokes equation) and a number of special solutions can be obtained (Stokes
or creeping flow [45]). But for the majority of more general flows the non-
linear term is essential to the dynamics of the flow. The relative strength
of this convective term in comparison to the viscous term finally determines
the state (laminar or turbulent) of the flow. As only a dimensionless control
parameter can be of fundamental significance, the viscosity has to be nor-
malised to a typical length L and velocity V of the system, leading to the
Reynolds number

Re =
LV

μ
. (2.3)

For low Reynolds numbers momentum diffusion by viscosity dominates and
the flow is laminar. With increasing Reynolds number the momentum con-
vection gains importance, which leads to the excitation of a few unstable
modes with specific flow pattern like, e.g., a Kármán vortex street of al-
ternating vortices. The number of excited modes gets larger with increased
control parameter. Eventually, they get nonlinearly unstable and will finally
lead to chaotic behaviour and turbulence.2

The parameters used in the definition of the Reynolds number (2.3) also
define the possible scales of the turbulence. For large structures the typical
geometrical size L defines the integral scale where energy is introduced into
the system. On the other hand, the viscosity sets a limit for the size of the
small structures, i.e. the Kolmogorov dissipation scale. Due to the Laplace
operator in the viscous term, viscous diffusion strongly gains influence for
smaller structure sizes where the energy is then dissipated into heat.

A characteristic of turbulent flows is that they are rotational. Therefore,

1For three dimensions, the existence and smoothness of a solution is not yet proven and
is one of the ’Millennium Problems’ announced by the Clay Mathematics Institute.

2Different mechanisms for the onset of turbulence are known but the exact route is yet
unclear. In the development of drift-wave turbulence the Ruelle-Takens scenario [46]
was confirmed [47–49].
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the vorticity Ω, defined as rotation of the velocity field,
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2.1 Principles of turbulence

Ω = ∇× v , (2.4)

plays an important role in the study of turbulence and describes the rotation
of fluid elements about their centroid. An evolution equation for the vorticity
can be deduced from the Navier-Stokes equation by taking the curl of (2.1).
With the vector identity for the convective term,

(v · ∇)v = ∇v2

2
− v × (∇× v) = ∇v2

2
− v ×Ω , (2.5)

equation (2.1) leads to

∂

∂t
Ω = ∇× (v ×Ω) + μ∇×Δv . (2.6)

Because of ∇ × (∇(v2/2 + p)) = 0, the pressure has been eliminated from
the equation. The first term on the right hand side can be simplified with
∇ · (∇× v) = 0 and the incompressibility condition (2.2) to

∇× (v ×Ω) = v(∇ ·Ω)−Ω(∇ · v) + (Ω · ∇)v − (v · ∇)Ω

= (Ω · ∇)v − (v · ∇)Ω .
(2.7)

Also the third term of equation (2.6) (with the viscosity μ) can be reformu-
lated, using incompressibility, ∇ · v = 0, to

∇×Δv = ∇× (∇(∇ · v))−∇× (∇× (∇× v))

= −∇× (∇×Ω) = ΔΩ .
(2.8)

With both rearranged terms (Eqs. (2.7) and (2.8)), equation (2.6) results in
the vorticity equation in three dimensions

∂

∂t
Ω+ v · ∇Ω = (Ω · ∇)v + μΔΩ , (2.9)

describing the time evolution of the vector Ω. Two terms are originating from
the nonlinearity of the Navier-Stokes equation, cf. equation (2.5) and (2.7),
which exist also in the absence of viscosity (ideal fluid). The second term of
equation (2.9) is the convection of vorticity, and the third term describes the
stretching of a vortex line3, leading to an amplification of the vorticity. This

3Curves defined as everywhere tangential to the vorticity vector.
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Chapter 2 Plasma turbulence

vorticity amplification is a consequence of the conservation of circulation Z
(Helmholtz’s theorem [50]) for ideal fluids,

Z =

∮
v · dl =

∫
∇× v dS = const . (2.10)

Thereby, the integration path of the line integral follows a closed vortex
line moving with the fluid. The second part of the equation, after Stokes’
law is applied, motivates the use of the vorticity, originally defined in (2.4).
From equation (2.10) it is now clear that if the cross section of a vortex S

is reduced through convection of the flow, the vorticity has to increase in
order to keep the circulation constant. This mechanism produces intense,
fine-scale structures as indeed observed in turbulence [51, 52].4 But also in
the vorticity equation, the viscous diffusion term (last term in Eq. (2.9)) is
present, which counteracts the vorticity amplification and sets a limit to the
structure size. For sufficiently small scales the viscosity becomes important,
leading to a diffusion which smoothes out the vorticity field and stops the
amplification.

For a two-dimensional flow, i.e. v = (vx, vy, 0), the vorticity has only
a component perpendicular to the plane Ω = ∇ × v = Ωez. Since the
derivative of the flow velocity parallel to the vorticity vector is always zero,
the first term on the right hand side of equation (2.9) vanishes, and the
vorticity equation reduces to

∂

∂t
Ω+ v · ∇Ω = μΔΩ . (2.11)

In two dimensions, the vorticity equation has reduced to a simple advection-
diffusion equation where the vorticity does not act back on the turbulent
flow. The missing vorticity stretching is the main difference between two- and
three-dimensional turbulence and has, as will be shown later (Sect. 2.1.3),
far reaching consequences for the turbulent system.5

2.1.2 Conservation laws

Dynamical systems described by the Navier-Stokes equation exhibit determ-
inistic chaos which, in some sense, can be referred to as being sensitive
4The funnel of a tornado or the vortex above the outlet of a bathtub, also it is a laminar

flow, arises due to the same principle.
5Some authors suggest that, because of the missing vortex stretching, flows in two

dimensions cannot be seen as turbulent systems, and turbulence is intrinsically three-
dimensional.
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2.1 Principles of turbulence

to initial conditions. In principle, the turbulent flow is reproducible, but,
since small differences in the initial and boundary conditions quickly lead
to completely different flow patterns, only a probabilistic description of the
turbulence seems meaningful [53, 54]. The quantities of interest in the study
of turbulence are averages over an ensemble of different realisations of an
experiment under nominally the same conditions.6

In the statistical sense just described fully developed turbulence possesses
global symmetries (homogeneity and isotropy). Through Noether’s the-
orem [56] every symmetry is connected to a conserved quantity.7 Assuming
spatial homogeneous turbulence (periodic boundary conditions), or rather
symmetry under space-translation, leads to the conservation of momentum

d

dt
〈v〉 = 0 . (2.12)

Since the Navier-Stokes equation is dissipative, the mean energy E =
〈
1/2v2

〉
is only conserved for the inviscid case (Euler equation) and the energy bal-
ance equation reads

d

dt

〈
1

2
v
2

〉
= −μ 〈|Ω|2〉 ,

d

dt
E = −2μW ≡ −εμ .

(2.13)

A new quantity called mean enstrophy W ≡ 〈1/2 |Ω|2〉 is introduced, which
captures the energy in the rotation of the flow field. Also the energy dis-
sipation rate εμ is defined in equation (2.13). It describes the rate at which
the system dissipates turbulent kinetic energy into heat at small scales and
is important since it is the remaining fluid characteristic determining the
turbulent scaling laws (see Sect. 2.1.3).
For the sake of completeness, also the mean helicity8 H ≡ 〈1/2v ·Ω〉 is a

6With Birkhoff’s theorem [55] the ensemble average is connected to an average over
time if the system is ergodic. This implies that the time average is the same for
(almost) all initial conditions of the system meaning that the system ’forgets’ its
initial state for sufficiently long times.

7In this context global conservation laws are of interest as compared to the more local
conservation of the circulation (Eq. 2.10).

8The helicity can be interpreted as a measure of the knottedness of vortex lines or the
twisting of vortices and is used in the investigation of solar dynamics and the plasma
dynamo [57, 58].
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conserved quantity if the viscosity is set to zero [59],
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Chapter 2 Plasma turbulence

d

dt

〈
1

2
v ·Ω

〉
= −μ 〈Ω∇×Ω〉 ,

d

dt
H = −2μHΩ ,

(2.14)

with the mean vortical helicity defined as HΩ ≡ 〈1/2 Ω · ∇ ×Ω〉.
From equation (2.11) it is clear that for ideal two-dimensional turbulence,

additionally, the vorticity Ω is conserved. Therefore, also the enstrophy
obeys a balance equation with the palinstrophy P ≡ 〈 1

2
|∇ ×Ω|2〉 which is

d

dt
W = −2μP . (2.15)

The enstrophy in two dimensions cannot increase with time, as it does
for three dimensions due to the amplification of vorticity (see Sect. 2.1.1).
Hence, the enstrophy is forced to decrease because of the viscosity μ, similar
as the energy in three dimensions. But equation (2.15) also has import-
ant implications for the energy. Since the enstrophy W is bound by equa-
tion (2.15) and cannot increase above its initial value, the energy dissipation

rate εμ goes to zero as the viscosity vanishes, i.e. εμ
μ→0−−−→ 0. This means

that the energy in two-dimensional turbulence is not dissipated by viscosity.

2.1.3 Cascades

The insights presented in section 2.1.2 lead to completely different phenom-
ena in the case of three- and two-dimensional turbulence. The picture of
turbulence described so far is based on the assumption that the energy is con-
stantly introduced into the system at some large scale (integral scale) either
by a stirring force or instabilities. Due to nonlinear interaction between the
turbulent structures, smaller structures are generated and the energy is con-
tinuously transmitted down to the smallest ones (Kolmogorov scale) which
are determined by viscosity. At the Kolmogorov scale, where the energy in-
put through nonlinear interaction and dissipation by viscosity gets equal, the
kinetic energy is finally dissipated into heat. This cascade process (Richard-
son cascade), where the energy cascades through all the possible scales, is
fundamental for turbulence and results in the special shape of turbulent
spectra. Normally, it is assumed that the range of scale where the energy is
introduced to the system (injection range) is clearly separated, speaking in
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terms of structure sizes, from the range where it is drained from the system
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Figure 2.1: Characteristic form of the logarithmic power spectrum of three-
dimensional turbulence (left) and two-dimensional turbulence (right). Instead of a
single (direct) cascade in three dimensions, the two-dimensional case shows a dual
cascade where the energy is inversely transferred to larger scales and the enstrophy
is transferred to smaller scales. [60]

(dissipation range). Structures in the injection range and dissipation range
then usually differ by orders of magnitude in size. Since we assume homo-
geneous turbulence, a spectral approach for turbulent flows seems natural
where the velocity field is decomposed into its Fourier components vk,

v(r) =
∑
k

vk exp(ik · r) . (2.16)

But for the description of turbulence at least two point statistics are needed.
This is, e.g., the energy, which is of second order, or the often used spatial
velocity structure function of the order p, defined as the averaged velocity
increment δv(l),9

Sp(l) = 〈|δv(l)|p〉 ≡ 〈|v(r+ l)− v(r)|p〉 . (2.17)

It can be shown that the second order structure function is directly connected
to the spectral energy E(k) = 1/2

〈
v2
k

〉
.

For three-dimensional turbulence the power spectrum has the form shown
on the left hand side of figure 2.1. The characteristic of this spectrum is that
it scales with a constant exponent in the inertial range, which is the region

9The structure function is normally separated into longitudinal and transverse structure
function parallel or perpendicular to the separation l, respectively.
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Chapter 2 Plasma turbulence

between the injection range on one side and the dissipation range on the
other side. Experimentally, one finds two empirical laws for fully developed
turbulence [61, 62]:

i. The second order (longitudinal) structure function S2(l) scales for high
Reynolds number turbulence approximately with a two-third power
law of the distance l, i.e. S2(l) ∝ l2/3.

ii. In the limit of high Reynolds numbers the energy dissipation rate εμ ≡
− d/dt E (see Eq. (2.13)) becomes independent of viscosity and tends
towards a finite value.10

In his K41 theory [65] Kolmogorov could show that for homogeneous iso-
tropic turbulence, under the assumption of self-similarity of turbulence and
a finite energy dissipation rate, the second order structure function has to
scale with the exponent two-third, which reproduces the experimental find-
ings very well.11 For the spectral energy then follows the scaling factor −5/3
resulting in the important scaling relation E(k) ∝ k−5/3.

The picture is quite different in the case of two-dimensional turbulence
which is shown on the right hand side of figure 2.1. Since the vorticity
amplification does not take place in two dimensions (see Sect. 2.1.2), the
enstrophy cannot increase above its initial value. With the energy balance
equation (2.13), it is clear that the energy dissipation rate εμ vanishes in
the limit of zero viscosity. The energy cannot cascade to small scale struc-
tures since the viscosity is no sink for the energy, as in contrast to three-
dimensional turbulence. Kraichnan [66, 67] followed that the energy, injected
at an intermediate scale, has to cascade to larger scales where vortices of the
size of the volume (or the box for periodic boundary conditions) finally dis-
sipate due to friction at the wall. But the scaling of this inverse energy
cascade should follow the same scaling law as in three-dimensional turbu-
lence, i.e. E(k) ∝ k−5/3. In contrast to the energy, the enstrophy can be
dissipated by viscosity important at small scales. The exact scaling expo-
nent for the direct enstrophy cascade is not as easily predicted as for the
energy cascade, and Kraichnan deduced an energy spectrum of the small
scales proportional to k−3.

10This is called the dissipation anomaly [63, 64].
11For the third order longitudinal structure function S3(l) a non-trivial and universal

relation can be derived, which is known as the four-fifth law [63].
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2.2 Plasma micro-instabilities

2.2 Plasma micro-instabilities

A multitude of micro-instabilities exists in magnetised plasma, which can be
categorised into two main classes by their structure parallel to the magnetic
field. The ideal interchange instability is homogeneous along the magnetic
field line and only the dynamics in the cross section perpendicular to the
magnetic field determines the stability. On the other hand, the drift-wave
(or better drift-wave like) instability is localised in parallel direction to the
magnetic field, and the (dominantly) parallel motion of the electrons strongly
influences the perpendicular dynamics.
From there on, different modes can be distinguished depending on their un-
derlying driving mechanism. In a toroidal fusion experiment density n and
temperature T decline eventually and the resulting pressure gradient ∇p =
T∇n+n∇T is the source of free energy which drives the linear instabilities.
Temperature gradient driven modes, either ion (ITG) or electron temperat-
ure (ETG), are normally stronger in the core of the plasma, whereas drift
waves, driven by the density gradient, dominate the plasma edge. Whether
the instabilities finally get unstable or not depends, among other things, on
the background magnetic field structure.

Because of turbulence, the major parameters important for the plasma are
not constant in time but fluctuate around their mean value (denoted with
the subscript 0),

n(r, t) = n0(r) + ñ(r, t) , φ(r, t) = φ0(r) + φ̃(r, t) ,

T (r, t) = T0(r) + T̃ (r, t) , B(r, t) = B0(r) + B̃(r, t) .

If magnetic field fluctuations B̃ are small, the electric field Ẽ is solely de-
termined by the potential fluctuations, i.e. Ẽ = −∇φ̃, and the turbulence is
electrostatic.12 In magnetised plasmas an electric field results in an E×B-
drift velocity

v
E×B =

E×B

B2
. (2.18)

That is why a potential perturbation is connected to a vortex structure in the
plane perpendicular to the magnetic field. Despite of a pressure gradient,
such a structure would in total not result in a net radial transport as it
is advecting density in equal parts to the inside and to the outside. The

12For low-temperature plasmas, like in the experiment TJ-K, also the temperature fluc-
tuations T̃ are small and can be neglected [68].
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Chapter 2 Plasma turbulence

turbulent transport is given as the product of density ñ and radial velocity
fluctuation ṽr,

Γ = 〈ñṽr〉 . (2.19)

For minimal transport Γ the phase difference between density and velo-
city fluctuation has to be π/2 [69, 70], which means zero phase shift for
density and potential fluctuation. This becomes clear when the correlation
between density and velocity fluctuation, defining the turbulent transport,
is written in spectral terms (see Sect. 4.3.1). With the Wiener-Khinchin
theorem the cross-correlation function can be connected to the cross power
spectrum [71, 72], consisting of the cross coherence γn,vr (f) between the
fluctuations, the respective auto power spectra Sn(f) and Svr (f), and the
cross-phase spectrum αn,vr (f):

Γ =
∑
f

γn,vr (f)
√
Sn(f)Svr (f) cos(αn,vr (f)) . (2.20)

A high coherence implies a linear dependence of the two signals, indicating
a constant phase relation. As the radial drift velocity includes the gradient
of the potential (Eq. (2.18)), the cross-phase between density and potential
fluctuation αn,φ is shifted by π/2, i.e. αn,vr = αn,φ − π/2. Equation (2.20)
can be expressed as

Γ ∝
∑
f

γn,φ(f)
√
Sn(f)Sφ(f) sin(αn,φ(f)) . (2.21)

When density and potential are in phase the turbulent structure will not
contribute to turbulent transport.

In the following, the underlying mechanism leading to the interchange
instability and the drift-wave instability will be discussed in more detail.

2.2.1 Interchange instability

The interchange instability in plasmas is equivalent to the Rayleigh-Taylor
instability13 and requires a pressure gradient and (for the discussion herein)
a magnetic field gradient14. For this instability the pressure perturbation is,

13This is a most common instability in turbulent systems as it appears in liquids under
gravity or nebulas from supernova explosions.

14The discussion in terms of the magnetic field curvature leads to the same result but
here the fluid picture is used.
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Figure 2.2: Illustration of the formation mechanism of the interchange instability.
Depending on the magnetic field structure, here depicted for the inner (left) and
outer side (right) of a torus, the interchange instability gets unstable.

in principle, constant parallel to the magnetic field line, i.e. k‖ = 0, and the
dynamic is restricted to the plane perpendicular to the magnetic field.

The formation mechanism of the interchange instability is schematically
shown in figure 2.2 for the two cases where the pressure gradient ∇p is
either antiparallel or parallel to the magnetic field gradient ∇B. A sinusoidal
pressure perturbation perpendicular to the magnetic field is present in both
cases, and the diamagnetic current

j
dia = −∇p×B

B2
, (2.22)

runs either to the bottom or the top, respectively. Due to the perturba-
tion, the isobar extends over regions with lower and higher magnetic field
as the magnetic field increases to the left. Because the diamagnetic cur-
rent depends inversely on the magnetic field, the current along the isobar is
not constant anymore and charge density develops, ∂tρ = −∇jdia �= 0. For
the case with antiparallel orientation (left) this leads to the shown charge
accumulation where the resulting E×B-drift (Eq. (2.18)) acts against the
pressure perturbation and stabilises it. For this reason such a configuration
is called the good curvature region. The situation changes in the opposite
case with parallel orientation of pressure and magnetic field gradient (right).
Now the resulting E×B-drift is directed in the direction of the perturbation
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which will be amplified.15 The phase difference between density and result-
ing potential fluctuation is αn,φ = π/2, which would lead to a high outward
transport (cf. Eq. (2.21)). This configuration of pressure and magnetic field
gradient is, therefore, called bad curvature region.

In the scrape-off layer (SOL), area outside the confinement region, the field
lines end on the wall and the connection length16 is relatively short, provid-
ing the boundary conditions needed for this instability. This leads to the
dominance of interchange characteristics in the turbulent fluctuations in the
SOL. Plasma blobs, one type of interchange instability, are ejected towards
the wall and make major contributions to the turbulent transport [73–78].
In the confined region of the plasma the conditions for ideal interchange
modes are not really met. Nevertheless, turbulence in the confinement region
can also exhibit interchange like characteristics. This includes ITG [79, 80]
and ETG modes [81, 82] and trapped electron modes (TEM) [83, 84], where
magnetically trapped particles lead to a potential distribution similar to the
one shown in figure 2.2.

2.2.2 Drift-wave instability

The other fundamental instability is the drift-wave instability [85], originat-
ing from a pressure perturbation which is localised along a field line (k‖ �= 0
and k‖ � k⊥). Also the dynamics parallel to the magnetic field line plays
now an important role. This results in a simultaneous potential perturba-
tion and a propagation perpendicular to the magnetic field and the pressure
gradient.

The initial situation is shown on the left hand side in figure 2.3. A localised
density perturbation ñ leads to a current along the magnetic field line, out
of the volume of increased density. Due to the much higher mobility of the
electrons, a positive potential perturbation φ̃ arises with zero phase shift
compared to the density perturbation (left). The resulting electrical field
counteracts this process until ambipolarity is reached again. As the electrical
field is connected to a perpendicular drift (Eq. (2.18)), the perturbation is
advected and the drift wave begins to propagate downwards (middle). When
finite inertia of the ions is included, an additional polarisation drift

v
pol
i =

mi

qB2
∂tẼ⊥ , (2.23)

15This can lead to radially extended structures called streamer with large radial extent.
16Path along the magnetic field line.
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Figure 2.3: Schematic illustration of the formation of a drift-wave instability due
to a local pressure perturbation. Left : Because of the high mobility, the electrons
react fast to the density perturbation ñ and lead to a positive potential perturba-
tion φ̃. Middle: The arising electrical fields result in E×B-drifts perpendicular to
the magnetic field B and lead, here, to a propagation of the drift wave downwards.
Right : The drift waves get unstable when density and potential have a cross-phase
unequal zero.

has to be considered, which in turn will counteract the charge separation
and slows down the propagation. But the drift wave is then still stable
since the phase between density and potential perturbation stays zero. It
gets unstable if the parallel electron response is disturbed and the electrons
cannot react adiabatically to the density perturbation (right in Fig. 2.3).
The electron response can be delayed by numerous factors such as collisions
between electrons and ions, induction or Landau damping.

The drift-wave instability is believed to be responsible for a major part
of the turbulent transport in the edge of fusion experiments [86, 87] and
has found to be the dominating instability in the confined region of the
experiment TJ-K [88–91]. A more detailed consideration of this instability
is part of the next two sections.

2.3 Drift waves

In this part, the dispersion relation of stable drift waves is deduced (Sects. 2.3.1
and 2.3.2) [60] and mechanisms leading to their destabilisation, and to tur-
bulent transport, are pointed out (Sects. 2.3.3 and 2.3.4).
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Chapter 2 Plasma turbulence

2.3.1 Dispersion relation of stable drift waves

For the simplest model of drift waves, a density perturbation is assumed to
be directly linked to a fluctuation in the potential. This results from the
equation of motion of the electrons parallel to the magnetic field,

meDtve‖ = e
∂φ

∂z
− 1

ne

∂pe
∂z

. (2.24)

For adiabatic electrons the inertia can be neglected, i.e. me → 0, and the
left hand side vanishes. The electric field balances the pressure gradient and,
as the temperature is considered constant, T = T0, equation (2.24) reads

e
∂φ

∂z
=
Te

ne

∂ne

∂z
. (2.25)

With integration of equation (2.25) the Boltzmann relation for electrons is
recovered,

ne = ne0e
eφ
Te . (2.26)

The discussion is restricted to low frequency oscillations where the plasma
approximation holds and ne = ni = n can be assumed. When only small
density fluctuations are considered, n = n0+ñ, and higher order terms in the
Taylor expansion of the exponential function are dropped, equation (2.26)
leads to17

ñ

n0
=
eφ̃

Te
. (2.27)

Equation (2.27) is the linearised Boltzmann relation where potential fluctu-
ations are directly coupled to density fluctuations.

As described in section 2.2.2, the drift wave evolves from a localised density
perturbation. The starting point for the derivation of the dispersion relation
is, therefore, the continuity equation18

Dtn =

(
∂

∂t
+ v · ∇

)
n = −n∇ · v . (2.28)

17Here, φ0 = 0 is assumed for the equilibrium plasma.
18If the fluid is incompressible, i.e. the density is constant, equation (2.2) follows.
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2.3 Drift waves

When the ions are considered cold, i.e. Ti ≈ 0, the velocity v is reduced
to the E×B-drift velocity vE×B (Eq. (2.18)).19 20 The right hand side of
equation (2.28) can be rewritten to

∇ · vE×B = ∇ ·
(
E×B

B2

)
= −E ·

(∇×B

B2

)
+B · (∇×E) = 0 . (2.29)

This expression is zero since only a temporal constant (B(t) = const) and
homogeneous magnetic field (B = Bez) is assumed here. The E×B-drift
velocity has only non zero components in the x and y-direction, i.e. v =
(vx, vy, 0), and, without loss of generality, the density gradient is set to point
into the negative x-direction. As the x-component of the E×B-drift may be
written as vE×B

x = Ey/B = −(∂/∂y)φ/B and the turbulent signals can be
separated into mean and fluctuating part, the continuity equation leads to

∂

∂t

ñ

n0
+

Te

eLnB

∂

∂y

eφ̃

Te
= 0 , (2.30)

where second order terms have been neglected. Here, the gradient decay
length Ln = −n0/(∂n0/∂x) was introduced. Through the Boltzmann re-
lation derived above (Eq. (2.27)), potential fluctuations can be related to
density fluctuations. For a harmonic perturbation in density and potential,
i.e. ñ, φ̃ ∝ exp(i(kr− ωt)) with r = (x, y, z), equation (2.30) leads to(

ω − Te

eLnB
ky

)
eφ̃

Te
= 0 . (2.31)

This is finally the linear dispersion relation for drift waves:

ω = ωdia =
Te

eLnB
ky . (2.32)

Phase and group velocity correspond to the diamagnetic drift velocity vdia =
−(∇p × B)/(e nB2). With this velocity the drift wave propagates perpen-
dicular to the magnetic field and density gradient into the drift direction of
the electrons.

19The parallel ion dynamic and other drifts are neglected.
20The hydrodynamic derivative Dt is then called advective derivative DE×B

t .
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Chapter 2 Plasma turbulence

2.3.2 Influence of finite ion mass

The electrical fields connected with a drift wave also give rise to a polarisation
drift, which counteracts the potential perturbation. Due to the high ion mass
this effect is generally small, but for small structure sizes it has to be taken
into account.

Since the elongation of the drift wave along the magnetic field line is
much larger than its perpendicular extent (k‖ � k⊥), the parallel charge
compensation due to the ion dynamics, i.e. the ion sound wave, is not
considered. The polarisation drift of the ions (Eq. (2.23)) is added to the
E×B-drift velocity on the right hand side of equation (2.28). With this
correction the divergence of the velocity does not vanish anymore and, if
higher order terms are neglected, it will result in

−n∇ · v ≈ −n0
mi

eB
∇ ·
(
∂

∂t
Ẽ⊥

)
= n0ρ

2
s
∂

∂t

(
∇2

⊥
eφ̃

Te

)
. (2.33)

ρs =
√
miTe/eB is called the drift scale, which is commonly used in plasma

turbulence to obtain dimensionless parameters. Like before, the assump-
tion of a harmonic perturbation is made and an additional term appears in
comparison to (2.31),(

ω − Te

eLnB
ky + ω(ρsky)

2

)
eφ̃

Te
= 0 . (2.34)

Solving this equation for ω leads to the modified dispersion relation

ω =
ρscs
Ln

ky
1 + (ρsky)2

=
ωdia

1 + (ρsky)2
. (2.35)

In contrast to equation (2.32), the dispersion relation deviates from a simple
linear relation. Especially, when the structure sizes perpendicular to the
magnetic field are small, viz. kyρs > 0.3, the influence of the polarisation
drift becomes important and the propagation velocity is reduced.

2.3.3 Unstable drift waves

The polarisation drift changes the propagation velocity of the drift wave
structures, but the drift wave is still stable. As discussed in section 2.2.2,
only a phase shift between density and potential, i.e. αn,φ �= 0, makes the
drift wave unstable and will lead to an exponential growth of the instability.
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2.3 Drift waves

This idea is the basis for the so-called iδ-model. The exact mechanism
for the perturbed parallel electron dynamics is not important for the time
being, and the model just assumes a retarded electron answer, reflected in a
modified Boltzmann relation

ñ

n0
≈ eφ̃

Te
(1− iδ) . (2.36)

If this relation is used in the derivation of the dispersion relation (Sect. 2.3.2),
equation (2.35) is altered to

ω =
ρscs
Ln

ky
1 + (ρsky)2 − iδ

≈ ωdia

1 + (ρsky)2
(1 + iδ) . (2.37)

The dispersion relation has now an imaginary part which is the actual growth
rate of the drift wave instability. If the phase shift is positive, αn,φ > 0,
meaning a retarded electron response, the drift-wave instability will grow
exponentially. Whereas in the case of a negative phase shift αn,φ < 0, the
instability is damped and, therefore, stable.

2.3.4 Influence of electron collisions

The case where the parallel electron dynamics is disturbed by collisions will
be addressed now. The parallel velocity with which the electrons react to a
perturbation is calculated from the equation of motion (see Eq. (2.24)). To
include the resistivity due to collisions, an additional term has to be added
to the equation:

meDtve‖ = e
∂φ

∂z
− 1

n

∂pe
∂z

−meνve‖ . (2.38)

The variable ν denotes the electron collision frequency. In the stationary
case (electrostatic limit) where the electron dynamic is fast in comparison
with the turbulent fluctuations (me → 0), it follows from equation (2.38)
with a spectral ansatz and neglecting higher order terms:

en0ik‖φ̃− Teik‖ñ− n0meνve‖ = 0 . (2.39)

From this equation the parallel electron velocity ve‖ can be deduced, which
is

ve‖ =
ik‖Te

meν

(
eφ̃

Te
− ñ

n0

)
. (2.40)
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Chapter 2 Plasma turbulence

The polarisation drift vpol can be neglected for electrons since it is propor-
tional to the mass (cf. Eq. (2.23)), and the divergence of the E×B-drift
is zero anyway (Eq. (2.29)). Therefore, only the parallel velocity in equa-
tion (2.40) will remain on the right hand side of the continuity equation of
the electrons (cf. Eq. (2.28)), which than simplifies to21

∂

∂t
ñ+ vE×B

x · ∂
∂x
n0 = −n0

∂

∂z
ve‖ . (2.41)

For harmonic fluctuations and ωdia = Te/(eLnB) ·ky, equation (2.41) results
in

ñ

n0
=
eφ̃

Te

(
ωdia + ik2‖D‖

ω + ik2‖D‖

)
. (2.42)

The variable D‖ = Te/(meν) was introduced in the style of a parallel dif-
fusion coefficient. If it is assumed that k2‖D‖ � ω, equation (2.42) can be
further simplified and results in

ñ

n0
=
eφ̃

Te

(
1− i

ωdia − ω

k2‖D‖

)
. (2.43)

This can be compared to the modified Boltzmann relation which was the
starting point for the iδ-model (Eq. (2.36)). The phase difference δ is now
determined by D‖ or rather the collision frequency of the electrons ν. Elec-
tron collisions therefore directly lead to a destabilisation of the drift waves.

2.4 Plasma turbulence models

In this section a model for drift-wave turbulence will be developed which de-
scribes the temporal evolution of density and potential fluctuations driven by
a density gradient [60]. The simplest case with slab magnetic field geometry
is presented in section 2.4.1 which is then extended to cover inhomogeneities
in the magnetic field (Sect. 2.4.2).

21The density gradient is again assumed to point into the negative x-direction.
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2.4 Plasma turbulence models

2.4.1 Hasegawa-Wakatani model

To model drift-wave turbulence, the dynamics perpendicular and parallel to
the magnetic field have to be connected. The starting point is the quasi
neutrality condition

∇ · j = ∇⊥ · j⊥ +∇‖ · j‖ = 0 , (2.44)

which is split up into the perpendicular and parallel part. Since there is
no current connected to the E×B-drift (Eq. (2.18)), contributions to the
perpendicular current j⊥ can only come from the diamagnetic current jdia =
−∇p × B/B2 and the polarisation current jpol = en(vpol

i − vpol
e ). But the

divergence of the diamagnetic current vanishes because 22

−∇ ·
(∇p×B

B2

)
= ∇p ·

(∇×B

B2

)
−B · (∇×∇p) = 0 . (2.45)

Because of the mass dependence, the polarisation drift of the electrons can
be neglected, jpol ≈ envpol

i . Equation (2.44), together with equation (2.23),
is then

∇⊥ ·
(min

B2
DE×B

t E⊥

)
+∇‖ · j‖ = 0 . (2.46)

This can further be simplified when the electric field is expressed with the
potential, E⊥ = −∇⊥φ, which leads to a vorticity equation

min

B2
DE×B

t ∇2
⊥φ = −∇‖ · j‖ . (2.47)

For the step from equation (2.46) to (2.47), the spatial derivative ∇⊥ has
to swap places with the advective derivative DE×B

t . This is not possible
without neglecting terms with ∇⊥ ·vE×B , originating from the product rule.
In general they are small compared to vE×B ·∇⊥, but especially for a constant
and homogeneous magnetic field the divergence of the E×B-drift velocity is
zero (Eq. (2.29)). The connection to the vorticity becomes apparent when
the vorticity is written as 23

Ω = −∇× v
E×B = −∇×

(
E×B

B2

)
= −∇⊥

E⊥

B
ez = ∇2

⊥
φ

B
ez . (2.48)

22The same magnetic field geometry is assumed as in section 2.3.1.
23For plasma turbulence the vorticity is defined with a minus sign in contrast to the

hydrodynamic definition!
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Chapter 2 Plasma turbulence

As a next step, the density has to be connected to the parallel electron
dynamics. The starting point is the continuity equation (2.28) for the elec-
trons. For small density fluctuations, i.e. ñ � n0, the continuity equation
simplifies to

DE×B
t (n+ ñ) = n0∇ · v . (2.49)

It is distinguished between the mean density n0 at a position x0 and the dens-
ity profile n whose gradients have to be taken into account in the advective
derivative. For the contributions on the right hand side, the polarisation
drift of the electrons can be neglected and the divergence of the E×B-drift
is zero anyway (Eq. (2.29)). The only remaining term is the parallel electron
velocity,

DE×B
t (n+ ñ) ≈ −n∇‖ ṽe‖ ≈ ∇‖

j̃e‖
e
. (2.50)

In this approach, possible contributions of the ions to the parallel current
have been disregarded. As in the case of the vorticity equation (2.47), the
perpendicular motion of the density due to the E×B-advection is coupled
to the parallel electron dynamics.

The parallel electron velocity ve‖, or rather the parallel current je‖ =
enve‖, is derived from the equation of motion (2.38) under the assumption
of a fast electron response as compared to the turbulent fluctuations (i.e.
me → 0),

j̃e‖ =
e

meν
∇‖ ·

(
p̃e − en0φ̃

)
. (2.51)

Equation (2.51) can be used to substitute the parallel current on the right
hand side of the vorticity equation (2.47) and the continuity equation (2.50)
resulting in the two basic equations of the simple turbulence model,(

∂

∂t
+ v

E×B · ∇
)
(n+ ñ) =

1

meν
∇2

‖

(
p̃e − en0φ̃

)
, (2.52)

min0

B2

(
∂

∂t
+ v

E×B · ∇
)
∇2

⊥φ̃ =
1

meν
∇2

‖

(
p̃e − en0φ̃

)
. (2.53)

The density is now coupled to the evolution of the vorticity via the parallel
electron dynamics.
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2.4 Plasma turbulence models

The two model equations (2.52) and (2.53) will be made dimensionless
with the following parameters:

n̂ =
ñ

n0
, φ̂ =

eφ̃

Te
, p̂ =

p̃

n0Te
, ∇̂ = ρs∇, κn =

ρs
Ln

, t̂ = t
cs
ρs
. (2.54)

When the advective derivative DE×B
t is multiplied with ρs/cs it will result in

ρs
cs

DE×B
t = ∂̂t +

(
ρs
cs

Te

Bρ2s

)
(ez × ∇̂⊥φ̂) · ∇̂⊥

= ∂̂t + (ez × ∇̂⊥φ̂) · ∇̂⊥ = D̂E×B
t .

(2.55)

The normalised advective derivative D̂E×B
t can then be expressed with Pois-

son brackets {·, ·} = ∂̂x∂̂y − ∂̂y∂̂x,

D̂E×B
t = ∂̂t +

{
φ̂, ·
}
. (2.56)

Since the density profile is assumed along the x-direction, the left hand
side of the continuity equation (2.52), where now the normalised advective
derivative D̂E×B

t is used, can be rewritten as

D̂E×B
t (n+ ñ) = n0

(
∂̂tn̂+

{
φ̂, n̂
}
+ κn∂̂yφ̂

)
. (2.57)

Hence, the continuity equation (2.52) (first model equation) is

∂̂tn̂+
{
φ̂, n̂
}
+ κn∂̂yφ̂ =

eB

meν
∇̂2

‖

(
n̂− φ̂

)
, (2.58)

when multiplied by ρs/(csn0). The analogue procedure in the case of the
vorticity equation (2.53) (multiplication with (ρ3seB

2)/(csn0miTe)) will nor-
malise the second model equation,

∂̂tΩ̂ +
{
φ̂, Ω̂

}
=

eB

meν
∇̂2

‖

(
n̂− φ̂

)
. (2.59)

Here, the dimensionless collision frequency ν̂, normalised to the electron
gyrofrequency ωce = eB/me, can be inserted,

ν̂ =
ν

ωce
. (2.60)
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Chapter 2 Plasma turbulence

Equations (2.58) and (2.59) together are then the Hasegawa-Wakatani equa-
tions in three dimensions [92, 93],

∂̂tn̂+
{
φ̂, n̂
}
+ κn∂̂yφ̂ =

1

ν̂
∇̂2

‖

(
n̂− φ̂

)
, (2.61)

∂̂tΩ̂ +
{
φ̂, Ω̂

}
=

1

ν̂
∇̂2

‖

(
n̂− φ̂

)
. (2.62)

The nonlinearity is included in the Poisson brackets where {φ̂, n̂} incorpor-
ates the density advection by the E×B-drift and {φ̂, Ω̂} originates from the
polarisation drift. The density gradient, represented by κn, is the source
of free energy for the turbulence. Via the right hand side, equations (2.61)
and (2.62) are coupled, which represents the intrinsic connection of density
and vorticity, or rather potential, in plasma turbulence. But this coupling
changes with the collision frequency ν̂, which will be shown to be important
for the growth of zonal flows (see Sect. 3.2).

The right hand side of the Hasegawa-Wakatani equations still includes the
parallel derivative, which makes them three-dimensional. With the density
decay length in parallel direction L‖, or alternatively the parallel wavenum-
ber k‖, the parallel gradient can be written as

1

ν̂
∇̂2

‖ ≈ ρ2s
L2

‖ν̂
=

(k‖ρs)
2

ν̂
=
k̂2‖
ν̂

= C∗ =
1

C
. (2.63)

The dimensionless parameter C∗ is the adiabaticity24, which is the inverse of
the collisionality C. With the approximation (2.63), the Hasegawa-Wakatani
equations (2.61) and (2.62) can be rewritten containing only parameters in
the perpendicular cross section of the magnetic field,

∂̂tn̂+
{
φ̂, n̂
}
+ κn∂̂yφ̂ = C−1

(
n̂− φ̂

)
, (2.64)

∂̂tΩ̂ +
{
φ̂, Ω̂

}
= C−1

(
n̂− φ̂

)
. (2.65)

These equations are then the two-dimensional Hasegawa-Wakatani equa-
tions.

For an adiabatic electron response the adiabaticity C∗ is infinite (C → 0)
and the density fluctuations then exactly mimic the potential fluctuations,
i.e. n̂ = φ̂. In this scenario the Poisson brackets {φ̂, n̂} vanish, and the

24The nomenclature in the literature is not consistent. Also the adiabaticity is often
denoted by C!
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2.4 Plasma turbulence models

right hand side of the Hasegawa-Wakatani equations is zero. When equa-
tions (2.64) and (2.65) are subtracted, this will result in the Hasegawa-Mima
equation [94]

∂̂t(φ̂− Ω̂) + κn∂̂yφ̂ =
{
φ̂, Ω̂

}
, (2.66)

or, with the vorticity Ω̂ expressed by the potential (cf. Eq. (2.48)),

∂̂t(1− ∇̂2
⊥)φ̂+ κn∂̂yφ̂ =

{
φ̂, ∇̂2

⊥φ̂
}
. (2.67)

In the adiabatic limit density and potential act as single fluid. The Hasegawa-
Mima equation is formally the same as the Charney equation [95], which
governs, e.g., the dynamics of Rossby waves in the atmosphere [96].

2.4.2 Curvature effects

In the derivation of the Hasegawa-Wakatani model (Sect. 2.4.1) a slab mag-
netic field geometry was assumed. With this assumption the divergence of
the E×B-drift (Eq. (2.29)) and the diamagnetic drift (Eq. (2.45)) vanish.
However, this is not the case when the magnetic field is allowed to be in-
homogeneous or curved [97–99]. The divergence of the E×B-drift is then

∇ · vE×B = ∇ ·
(
E×B

B2

)
= ∇φ ·

(
∇× B

B2

)
. (2.68)

In the case of the electron diamagnetic drift this is

∇ ·
(∇pe ×B

enB2

)
= − 1

en
∇pe ·

(
∇× B

B2

)
. (2.69)

Both drifts determine the perpendicular velocity in the continuity equa-
tion (2.50). And the diamagnetic drift adds to the perpendicular current,
which leads to an additional term in the vorticity equation (2.47). This
results in the modified model equations25

DE×B
t (n+ ñ) =

1

meν
∇2

‖

(
p̃e − en0φ̃

)
+

1

e
∇⊥(en0φ̃ − p̃e) ·

(
∇× B

B2

)
, (2.70)

25The background density n in the diamagnetic drift can be dropped since in a toroidal
system the diamagnetic current is in equilibrium with the parallel Pfirsch-Schlüter
current.
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Chapter 2 Plasma turbulence

min0

B2
DE×B

t ∇2
⊥φ̃ =

1

meν
∇2

‖

(
p̃e − en0φ̃

)
+∇⊥p̃e ·

(
∇× B

B2

)
. (2.71)

In contrast to the initial model equations (2.52) and (2.53), an additional
coupling term appears on the right hand side. In the same manner as in
section 2.4.1, the equations are made dimensionless using (2.54). As the
magnetic field is still assumed to point in z-direction, B = Bez, the norm-
alised geometrical coupling term can be rewritten as

∇̂(·)
(
∇̂ × B

B2

)
= ∂̂x(·)∂̂y lnB − ∂̂y(·)∂̂x lnB = −{lnB, ·} . (2.72)

Relation (2.72) together with the modified continuity (2.70) and vorticity
equation (2.71) results in the extended (curved) Hasegawa-Wakatani equa-
tions

∂̂tn̂+
{
φ̂, n̂
}
+ κn∂̂yφ̂ = C−1

(
n̂− φ̂

)
− 2
{
lnB, φ̂− n̂

}
, (2.73)

∂̂tΩ̂ +
{
φ̂, Ω̂

}
= C−1

(
n̂− φ̂

)
− 2 {lnB,−n̂} . (2.74)

The geometrical coupling term is connected to the magnetic field line curva-
ture κ = (κn, κg), which has normal and geodesic curvature as components
(see Chap. 5.1.2). From the magnetohydrodynamic (MHD) equilibrium con-
dition, j×B = ∇p, follows in a toroidal geometry that

κ =
μ0

B2
∇⊥

(
p+

B2

2μ0

)
≈ ∇⊥ lnB , (2.75)

when a small plasma beta β = p/(B2/2μ0) � 1 is assumed [100]. With
equation (2.75) the Poisson brackets (2.72) may be written as

{lnB, ·} = κn∂̂y(·)− κg∂̂x(·) . (2.76)

Depending on their sign the curvature components increase the coupling
between density and potential.
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Chapter 3

Zonal flows

Apart from small scale turbulence, mesoscopic zonal flows are a natural
ingredient of turbulence in two dimensions. Like in a self-organisation pro-
cess, the zonal flows are generated by the ambient turbulence itself and can,
therefore, be seen as a secondary instability. The structure of zonal flows in
toroidally confined plasmas, and the closely related geodesic acoustic mode,
is discussed in section 3.1. Section 3.2 deals with the Reynolds stress drive
and the self-amplification process. As drift waves and zonal flows are in a
predator-prey like relationship, the dynamics can be described by a Lotka-
Volterra model whose different solutions are part of section 3.3. Two import-
ant damping mechanisms of zonal flows in toroidal geometry are elucidated
in section 3.4.

3.1 Zonal potential modes in plasmas

Zonal flows belong to the group of turbulent modes which are characterised
by a zonal potential perturbation [33]. Because of their distinguished spatial
structure with a homogeneous potential on a whole flux surface, the direct
density response vanishes for such modes. Although the potential might be
homogeneous, the connected flow pattern, at least in a toroidal configura-
tion, is not. This leads to a compression of the plasma and, therefore, to
a coupling of the potential to the density. In toroidal magnetic field con-
figurations (see Fig. 1.1) such pressure accumulations are balanced along
the magnetic field lines as they are twisted around the torus and connect
the regions of different pressure.1 The time it takes for density perturba-
tion to equilibrate in parallel direction is roughly given by the ion sound
velocity cs =

√
(Te + Ti)/mi divided by the connection length qsR0 (safety

1This is the same principle as in the case of the Pfirsch-Schlüter currents, where the
charge accumulation due to asymmetric diamagnetic currents (Eq. (2.22)) is balanced
along the field line.
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Figure 3.1: Schematic illustration of a zonal flow in toroidal geometry. The neg-
ative potential perturbation (blue) is connected to a shear flow, indicated by the
arrows [101].

factor qs 2, major radius R0). Two regimes can be distinguished. For a
slow zonal potential variation, i.e. ωzonal � cs/(qsR0), the connected flow is
incompressible and the toroidicity just leads to a toroidal return flow. This
mode is the zonal flow and will be discussed in section 3.1.1 in more detail. If
the variation in the potential is comparably fast, i.e. ωzonal ∼ cs/(qsR0), the
result is an oscillation between the zonal potential and the pressure perturba-
tion, which is called the geodesic acoustic mode. The mechanism responsible
for the development of this mode will be discussed in section 3.1.2.

3.1.1 Zonal flows

A zonal flow in a magnetically confined toroidal plasma, sketched in fig-
ure 3.1, is an extreme example of a convective cell where, in general, the po-
tential structure has zero wavenumber in toroidal direction ϕ. The convect-
ive flow vE×B (Eq. (2.18)) connected with the homogeneous potential per-
turbation is always tangential to the magnetic flux surface. At the same time,
the flow has a narrow radial extent with relatively small radial wavenumber.

2This is the inverse of the rotational transform -ι, which is a measure for the twist of
the field lines around the torus as it gives the difference in poloidal angle Δθ of a
field line after one toroidal turn, i.e. q−1

s = -ι = Δθ/2π.

44

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3.1 Zonal potential modes in plasmas

Together, the essential zonal flow features are:3

kθ = kϕ = 0 , kr �= 0 . (3.1)

These characteristics imply that the potential perturbation of a zonal flow is
always connected to a shear flow, mainly directed in the poloidal direction θ.
The toroidicity, which entails a magnetic field strength dependence in the
radial direction R, induces the inhomogeneities in the poloidal flow. For a
simple torus with B(R) ∝ 1/R, the flow (vE×B ∝ Er/B) is faster on the
outboard side than on the inboard side, which leads to a compression on
the top or bottom. The parallel return flows, which make the total flow
divergence free, have the form [102]

vϕ =
Er

B
2qs cos(θ) , (3.2)

depending on the safety factor qs. For stellarators with their magnetic field
ripples, the flow is more complex and does crucially depend on the config-
uration of the particular experiment.

Due to the vanishing parallel wavenumber, the Boltzmann relation (Eq.
(2.27)) does not hold for the zonal potential and, in principle, no density
perturbation is connected with the zonal flow. Since there is no parallel
acceleration and the linear polarisation drift (cf. Eq. (2.23)) vanishes, the
dispersion relation of the zonal flow is especially simple, i.e.

ω = 0 . (3.3)

The special structure of the zonal flow has further consequences. Since the
potential is homogeneous on the flux surface, Landau damping is especially
small. In addition, the zonal flow does not contribute to radial turbulent
transport since it has no poloidal electric field components (see Chap. 2.2).
But even more important, as it is a poloidal shear flow, the zonal flow can
reduce turbulent transport by shearing off turbulent eddies (see Sect. 3.3).

3.1.2 Geodesic acoustic mode

The other branch of the solution for the zonal potential (m = n = 0) is at
higher frequencies as compared to the zonal flow, called geodesic acoustic
mode (GAM). The potential structure and the connected flow pattern are
essentially the same as in the case of the zonal flow but are now accompanied
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Figure 3.2: Illustration of the mechanism leading to the GAM oscillation. Left :
Cross section in a simple toroidal geometry. The magnetic field strength B(R)
is inversely proportional to the radius. This leads to E×B-drifts (vE×B ∝ Er/B)
with different magnitude on the inner and outer side of the torus and a compression
at the top or bottom, respectively. Right : Due to the displacement of the pressure
profile, the diamagnetic current has a radial component jdiar , which compensates
for the asymmetry in the E×B-drift velocity. [103]

by a pressure perturbation. In figure 3.2 the driving mechanism of the GAM
is shown schematically. The variation of the magnetic field leads to the
asymmetries in the E×B-drift velocity (left figure) and the perpendicular
flow is, therefore, not divergence free,

∇⊥ · vE×B = −2vE×B · ∇⊥ lnB

= −2vE×B · κ
∝ −κg

B
.

(3.4)

For a quasi-static variation, like the zonal flow, the resulting pressure per-
turbation is directly compensated in parallel direction along the field line, i.e.
∇⊥ · vE×B = −∇‖ · v. Otherwise a m = 1 density perturbation will persist
which will shift the pressure profile (isobars in the right figure) in compar-
ison to the flux surfaces. This leads to diamagnetic currents (Eq. (2.22))
with a non vanishing radial component jdiar .4 As it is shown in the figure,
these currents counteract the potential perturbation, trying to reverse the

3In contrast, streamer constitute the opposite case with a large radial extent (kr
∼= 0)

and a poloidal wavenumber unequal zero (kθ �= 0).
4Due to this currents, a magnetic field fluctuation is connected to the GAM oscillation,

which can be observed in fusion experiments [104, 105].
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Figure 3.3: Scaling of the GAM fre-
quency with the electron temper-
ature Te for different gases at
TJ-K parameters. The oscillation fre-
quency strongly increases for smaller
ion masses. [103]

radial electric field Er. Because of this restoring force, the perturbation will
start to oscillate with the characteristic frequency ωGAM. For the GAM the
toroidicity is a prerequisite and, therefore, GAMs cannot develop in simple
slab geometry.

In contrast to the zonal flow, the dispersion relation for the GAM is not
trivial and leads to the oscillation frequency ωGAM, which, for large aspect
ratio (a� R0) and circular plasma, is given by [106]

ω2
GAM � c2s

R2
0

(
2 +

1

q2s

)
. (3.5)

The frequency of the GAM is determined by the time it takes for the dens-
ity perturbation (sound wave) to propagate once around the torus, why
geometrical parameters like, e.g., elongation [107] have a strong influence.5

Characteristic for the GAM is that it scales with the sound velocity cs. In
figure 3.3 the simple scaling (3.5) is depicted for typical TJ-K parameters.

The GAM is subject to Landau damping (∝ exp
(−q2s )) [108–110] and,

since the safety factor normally increases with increasing minor radius, typic-
ally found in the edge of the confined region. As the zonal flow and the GAM
have essentially the same flow structure, both modes can couple. Therefore,
the GAM represents a sink for the zonal flow energy, which is a major loss
channel for zonal flows in toroidal configurations (see Sect. 3.4.2).

5Especially for stellarators, the situation is more complicated and an analytic formula
is hard to obtain. [108]
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Chapter 3 Zonal flows

3.2 Turbulent Reynolds stress drive

For the description of the zonal flow the poloidal mean or rather the zonal av-
erage is of interest. With the Reynolds decomposition, the velocity field and
the pressure is split into the mean (denoted by a bar) and the superimposed
fluctuating part (denoted by a tilde),

v = v̄ + ṽ , (3.6)

p = p̄+ p̃ . (3.7)

The mean quantity is generally defined as the ensemble average 〈 · 〉, where
for now it is not substituted by another, e.g. temporal, average. Mean and
fluctuating part fulfil the following relations,

〈v〉 = 〈v̄〉 = v̄ , 〈ṽ〉 = 0 . (3.8)

Equation (3.8) applies similarly to the pressure p. The different parts of the
flow field do not only differ in their statistical distribution, but also vary
greatly in scale. While the mean flow changes over relatively long times
or large differences, the fluctuations are small scaled, which will become
important when derivatives are involved. In here, only incompressible flows
are considered,6

〈∇ · v〉 = ∇ · v̄ = 0 , ∇ · ṽ = 0 . (3.9)

To obtain the evolution of the mean flow, the Reynolds decomposition is
used in the Navier-Stokes equation (2.1),

∂

∂t
(v̄ + ṽ) + ((v̄ + ṽ) · ∇) (v̄ + ṽ) = −∇(p̄+ p̃) + μ∇2(v̄ + ṽ) , (3.10)

and the ensemble average is taken. Because of (3.8) and (3.9), the mixed
terms in the convective derivative are zero,

v̄ · ∇〈ṽ〉 = 〈ṽ〉 · ∇v̄ = 0 . (3.11)

This simplification leads to an evolution equation of the mean flow v̄,

∂

∂t
v̄ + (v̄ · ∇) v̄ + 〈(ṽ · ∇) ṽ〉 = −∇p̄+ μ∇2

v̄ . (3.12)

6The derivative ∇ commutes with the ensemble average since the incompressible con-
tinuity equation (2.2) is linear.
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3.2 Turbulent Reynolds stress drive

But equation (3.12) includes a part (third term) solely determined by the
fluctuations. For the next steps, equation (3.12) is treated in component
notation7, which reads

∂tv̄i + (v̄j∂j) v̄i + 〈(ṽj∂j) ṽi〉 = −∂ip̄+ μ∂2
j v̄i . (3.13)

The third term, which includes the fluctuations, can now be rewritten as

〈(ṽj∂j) ṽi〉 = ∂j 〈ṽiṽj〉 − 〈ṽi (∂j ṽj)〉 . (3.14)

Because of (3.9), the last term in equation (3.14) vanishes. The second-order
moment 〈ṽiṽj〉 is then substituted in equation (3.13),

∂tv̄i + (v̄j∂j) v̄i = −∂ip̄+ μ∂2
j v̄i − ∂j 〈ṽiṽj〉

= ∂j {−p̄δij + μ (∂j v̄i + ∂iv̄j)− 〈ṽiṽj〉} .
(3.15)

Equation (3.15) is known as the Reynolds equation or Reynolds-averaged
Navier-Stokes equations (RANS equations). The terms in the curly brackets
on the right hand side are in sequence: the mean pressure tensor, with only
elements on the diagonal, the mean viscous stress tensor, originating from the
vector Laplacian term, and the Reynolds stress tensor. The Reynolds stress
describes a momentum flux from the turbulent fluctuations to the mean
flow and introduces a coupling between both parts of the velocity field.8

Equation (3.15) shows that, in general, the mean flow cannot be described
by just considering averaged quantities, but involves a second-order moment
of the fluctuating velocity.9 An equation for the second-order moment can
be found, which in turn involves moments of the next higher order. This
can be repeated so on and so forth but, since every other equation involves
moments of the next order, the set of equations is not closed, which states the
so-called closure problem. The set of equations can be closed using a closure
approximation [111], however, information of the turbulence will always be
lost if not the full statistics of the fluctuations is used.

The Reynolds stress is a tensor of second order with the single point velo-
city correlations (in the limit of zero separation or time lag) as components.

7In this notation the abbreviations are ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , and ∂ij ≡ ∂2
/
∂xi∂xj .

8The product of the velocity fluctuations, originating in the quadratic nonlinearity
of the Navier-Stokes equation, becomes a convolution in Fourier space, v̂i ⊗ v̂j =∫
v̂i(k

′)v̂j(k − k
′) d3

k
′. This describes three-wave (triad) interactions as it involves

modes at wavenumbers k, k′, and k − k
′.

9This is not the case for isotropic turbulence where the second-order moment of the
velocity vanishes.
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Figure 3.4: The Reynolds stress is zero when the velocity distribution is isotropic
(left). With, e.g., a shear flow which tilts the vortices (right), this symmetry is
broken and the Reynolds stress takes finite values. [60]

Due to the symmetry of the correlation, the Reynolds stress tensor is sym-
metric and positive semi definite. As for other stress tensors, the components
can be split into the normal stress components 〈ṽiṽi〉 on the diagonal and the
off-diagonal shear stresses 〈ṽiṽj〉 acting tangential to the normal directions.
When the isotropy of the turbulence is broken, due to inhomogeneities like,
e.g., shear flows, the off-diagonal elements are non-zero as it is shown in
figure 3.4.

Until now the average 〈 · 〉 in (3.8) has not been specified. Here, the zonal
flow in torus geometry (r, θ, ϕ) is of interest, which is characterised as a ho-
mogeneous mode on a flux surface (cf. Sect. 3.1.1). Therefore, the average is
taken spatially as a poloidal average along a flux surface. For simplicity, the
pressure gradient and the viscous term in equation (3.15) are not regarded
further. Equation (3.15) is then the averaged poloidal momentum balance
equation

∂

∂t
v̄θ + (v̄ · ∇) v̄θ = −∂j 〈ṽθ ṽj〉 . (3.16)

Since it is assumed that the zonal flow does not vary in toroidal direction
and has no averaged radial velocity component, only the poloidal dependence
will persist in the advective term. The right hand side includes the radial
gradient of the Reynolds stress tensor component 〈ṽθ ṽr〉. Normally, only
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3.2 Turbulent Reynolds stress drive
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Figure 3.5: Sketch of the self-amplification process connected to the drive of zonal
flows. In plasmas turbulence the cross-coupling between density and potential field
is involved.

this (perpendicular) Reynolds stress is considered because it is the main
component of the Reynolds stress tensor. Nevertheless, there is also the
tensor component 〈ṽθ ṽϕ〉 (parallel Reynolds stress), which defines the aver-
aged poloidal momentum flux due to toroidal velocity fluctuations. If only
the main contributions to the poloidal momentum balance are considered
and a homogeneous poloidal flow is assumed, i.e. a constant magnetic field,
equation (3.16) simplifies to

∂

∂t
v̄θ = − ∂

∂r
〈ṽθ ṽr〉 . (3.17)

So, the zonal flow is only accelerated when there is a radial gradient in the
Reynolds stress 〈ṽθ ṽr〉. The Reynolds stress drive is, therefore, a transfer of
turbulent poloidal momentum to the poloidal mean flow.

In plasma turbulence the Reynolds stress drive also involves the cross-
coupling between density and potential (Fig. 3.5). The turbulent structures
consist of a density and a potential component, which are coupled via the
parallel electron dynamics (see Chap. 2.4.1). The shear flow tilts the struc-
tures in the density but leaves the potential unaffected at first. Only due to
the cross-coupling, the actual vortex flow ṽ ∝ ∇⊥φ̃ is tilted, which leads to
net Reynolds stress, closing the loop. Therefore, an increased collisionality
should hinder zonal flow drive as it reduces the density-potential coupling
(cf. Eqs. (2.64) and (2.65)).

The derivation of the Reynolds stress drive equation was done in the elec-
trostatic limit, which is valid for low β-plasmas. In general, also fluctuations
in the plasma currents and, therefore, in the magnetic field would have to
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Chapter 3 Zonal flows

be considered. The additional term has also the form of a (second order)
tensor and is called the Maxwell stress 〈b̃ib̃j〉. For drift-Alfvén turbulence
the contributions of Reynolds stress and Maxwell stress have opposite sign
and can thus reduce the growth rate of the zonal flow [112, 113].

3.3 Drift-wave zonal-flow dynamics

For the description of the zonal flow dynamics in drift-wave turbulence, the
evolution of the poloidal shear flow has to be connected to the response of
the drift-wave spectrum to the shear (Sect. 3.3.1). Solutions to the resulting
predator-prey model are derived in section 3.3.2 and 3.3.3. The presentation
follows reference [33].

3.3.1 Model equations

The zonal flow dynamics are governed by the poloidal momentum balance
equation (3.17), as the density perturbation can be neglected and the zonal
flow is basically a convective cell. Thus, the evolution of the zonal shear, i.e.
zonal vorticity U = v′ZF = ∇2

rφ̃ZF/B, can be described by

∂

∂t
∇2

rφ̃ZF = − ∂

∂r

〈
ṽr∇2φ̃DW

〉
− γD∇2

rφ̃ZF , (3.18)

where γD includes generic zonal flow damping.10 The zonal flow is driven
through a radial transport of drift wave vorticity, i.e. 〈ṽr∇2φ̃DW〉 (cf. Eq.
(2.19)), which is, therefore, rather a redistribution than a generation process.
The nonlinear term may be expressed in Fourier-space, which gives

∂

∂t
∇2

rφ̃ZF =
1

B

∂2

∂r2

∫
d2k krkθ|φ̃DW,k|2 − γD∇2

rφ̃ZF . (3.19)

Here, the connection to the drift-wave vortex density or rather energy dens-
ity Ñk = (1 + k2ρ2s )

2|φ̃DW,k|2 (cf. Eq. (2.35)) can be made,

∂

∂t
∇2

rφ̃ZF =
1

B

∂2

∂r2

∫
d2k krkθ

Ñk

(1 + k2ρ2s )2
− γD∇2

rφ̃ZF . (3.20)

Eventually, an equation for the evolution of the zonal flow enstrophy U2

shall be obtained. When multiplied by U and a coherent response to the

10This can be a scalar or an integro-differential operator.
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3.3 Drift-wave zonal-flow dynamics

effect of the shear flow is assumed, i.e. Ñk = (δN/δv′ZF)v
′
ZF, equation (3.20)

results in

∂

∂t
U2 =

1

B2

∂2

∂r2

∫
d2k

krkθ
(1 + k2ρ2s )2

δN

δv′ZF
U2 − γDU

2 . (3.21)

The modulation of the drift-wave spectrum δN/δv′ZF leads to an amplifica-
tion of the shear flow why drift-wave turbulence is unstable to the growth
of zonal flows. This can also be shown for a plane drift wave [114], which
couples in a four-wave interaction via two sidebands to the kθ=0 mode (mod-
ulational instability).11 12 Both models give the same zonal flow growth rate
in the limit when a long-lived primary drift wave is assumed.

For a complete model the response of the drift-wave spectrum to the mod-
ulation by the shear flow has to be calculated. This can be derived from the
wave kinetic equation13

∂Nk

∂t
− {ω,Nk} = γkNk , (3.22)

expressed with Poisson brackets {·, ·} = ∂x∂k−∂k∂x. In quasi-linear approx-
imation and for the case where the lifetime of drift waves and zonal flows
is short compared to the characteristic evolution time of the system (time
scale of the linear zonal flow instability), it follows14(

∂

∂t
− γL + γNL

)
Nk =

∂

∂kr

(
Dk

∂Nk

∂kr

)
. (3.23)

This describes a diffusion in k-space with the corresponding flux Dk
∂Nk

∂kr
,

induced by the random zonal flow shearing, which, for a stationary state,
11Still, this involves only three independent waves, interacting in two pairs.
12In the process of shearing the other turbulent modes are forced to couple to the zonal

flow (m = 0) as the resonance manifold of other possible mode interactions shrinks
and the respective coupling coefficient is weakened [115]. This is equivalent to the
physical picture of the straining-out process [116] where vortices are tilted and coiled
up by the shear flow [34]. This manifold shrinking also implies that a background
shear flow, which ’pre’-tilts the eddies, leads to a higher zonal flow level.

13Known from geometrical optics, it describes the evolution of a distribution of wave
packets [117, 118]. Here it can be used since a clear time separation between the low
frequency zonal flow and the higher frequency drift waves is assumed, i.e. ΩZF �
ωDW. Hence, the zonal flow adiabatically modulates the drift-wave spectrum. If this
cannot be applied, an envelope formalism has to be used, which does also capture
wave diffraction [119].

14This corresponds to a system state with stochastically excited modes (’drift wave ray
chaos’) with random zonal flow shearing. A long lifetime of drift waves and zonal
flows would be the opposite case where wave-packet trapping may terminate the
zonal flow growth. [33]
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Chapter 3 Zonal flows

has to be in balance with the linear drive γL and the nonlinear damping γNL

(self-interaction) of the drift waves. The modulation induced by v′ZF can be
deduced from equation (3.23) which, when inserted in equation (3.21), leads
to (

∂

∂t
+ γD

)
U2

q =
∂2

∂r2

∑
k

Dq
∂Nk

∂kr
U2

q . (3.24)

In contrast to equation (3.23), the diffusion term (right hand side) is negative
consistent with an inverse energy transfer (inverse cascade), but the zonal
flow drive is non-local in k-space.15 The set of equations (3.23) and (3.24)
are the model equations for the drift-wave zonal-flow dynamics, which will
be further analysed in the following.

3.3.2 Self-consistent states

For a basic analysis of the system dynamics, the number of degrees of freedom
can be reduced by using the enstrophy (cf. Chap. 2.1.2) of the drift waves

〈N〉 =
∑

kθ �=0,kr �=0

Nk =
∑

kθ �=0,kr �=0

(1 + (kρs)
2)2|φk|2 , (3.25)

and of the zonal flows

〈U2〉 =
∑
q

U2
q =

∑
kθ=0,kr �=0

(krρs)
4|φk|2 . (3.26)

For now the nonlinear damping of the drift waves γNL will be neglected, and
the integration of equation (3.23) and (3.24), with use of an approximation
for the right hand side, leads to(

∂

∂t
− γL

)
〈N〉 = −α〈U2〉〈N〉 , (3.27)(

∂

∂t
+ γD

)
〈U2〉 = β〈U2〉〈N〉 . (3.28)

α and β are constants. This system of differential equations, coupled via
the product term on the right hand side, has the form of the Lotka-Volterra

15This is similar to the result obtained in the eddy-viscosity approximation [120] where
the Reynolds stress in equation (3.17) is replaced by a term solely determined by
the mean flow velocity, i.e. −〈ṽθ ṽr〉 = μT∂r v̄θ. A negative turbulent viscosity μT

represents flow drive.
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3.3 Drift-wave zonal-flow dynamics

equations [121], which describe the self-regulating dynamics of two popula-
tions. In this predator-prey relation one population grows on the cost of
the other one.16 Transferred to the drift-wave zonal flow turbulence, the
drift waves 〈N〉 (primary instability) are the prey where the zonal flow 〈U2〉
(secondary instability) feeds on.

Stationary solutions of this system of equations can be obtained with
∂〈N〉/∂t = ∂〈U2〉/∂t = 0. The first is trivial, whereas it is not stable:

〈N〉 = 0 , 〈U2〉 = 0 . (3.29)

The second stationary solution is the fix point

〈N〉 = γD
β
, 〈U2〉 = γL

α
, (3.30)

which is stable and describes a state of the system where the growth and
decay of both populations is just in balance.
With a constant of motion non-stationary solutions of the system can be
obtained. As the differential equations (3.27) and (3.28) are autonomous,
the time derivative is eliminated by separation of variables, leading to

d〈U2〉
d〈N〉 =

−γD〈U2〉+ β〈U2〉〈N〉
γL〈N〉 − α〈U2〉〈N〉 . (3.31)

This can be rewritten as

(β − γD〈N〉−1) d〈N〉+ (α− γL〈U2〉−1
) d〈U2〉 = 0 . (3.32)

Integration of equation (3.32) results in the constant of motion. The solution
describes oscillatory trajectories around the fix point in phase space. The
specific trajectory is determined by the constant on the right hand side:

(β〈N〉 − γD ln 〈N〉) + (α〈U2〉 − γL ln 〈U2〉) = const . (3.33)

A representation of the phase space including the stationary solution and
some trajectories of the oscillatory solutions is shown in figure 3.6.
For small deviations of the stationary solution (3.30), variables 〈U2〉 and

16The predator-prey dynamics are also recovered in the cascade (shell) model, a gen-
eralisation of the three-wave-interaction model. Additionally, these models exhibit
chaotic regimes. [114, 122]

55

〈N〉 can be written as

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 3 Zonal flows

Figure 3.6: Trajectories of a
predator-prey model in the phase
space, which is spanned by the
drift-wave enstrophy 〈N〉 and the
enstrophy of the zonal flow 〈U2〉.
The centre of the oscillations
marks the stable fix point. [123]

0 U
2

N

〈N〉 = γD
β

+ δ〈N〉 , (3.34)

〈U2〉 = γL
α

+ δ〈U2〉 . (3.35)

Inserting them into the Lotka-Volterra equations (3.27) and (3.28) yields:

∂

∂t
δ〈N〉 = −γDα

β
δ〈U2〉 − α δ〈U2〉 δ〈N〉 , (3.36)

∂

∂t
δ〈U2〉 = γL

β

α
δ〈N〉+ β δ〈U2〉 δ〈N〉 . (3.37)

The product δ〈U2〉 δ〈N〉 is of second order and can be neglected since only
small deviations are considered. With this approximation two linear differ-
ential equations are obtained,

∂

∂t
δ〈N〉 = −γDα

β
δ〈U2〉 , (3.38)

∂

∂t
δ〈U2〉 = γL

β

α
δ〈N〉 . (3.39)

Differentiation with respect to time leads then to the differential equations
of a harmonic oscillator

δ ¨〈N〉+ ω2 δ〈N〉 = ¨δ〈U2〉+ ω2 δ〈U2〉 = 0 . (3.40)

The system has a characteristic frequency of

ω =
√
γLγD , (3.41)

where the oscillation is only determined by the growth rate and the damping
rate of the respective population.
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3.3 Drift-wave zonal-flow dynamics

3.3.3 Drift-wave self-regulation

So far the nonlinear self-regulation of the drift waves has been omitted.
However, this is essential for drift-wave turbulence and will be accounted for
with γNL = γD2〈N〉. The model equations (3.27) and (3.28) in the extended
form are then:

∂

∂t
〈N〉 = γL〈N〉 − γD2〈N〉2 − α〈U2〉〈N〉 , (3.42)

∂

∂t
〈U2〉 = −γD〈U2〉+ β〈U2〉〈N〉 . (3.43)

An additional stationary solution is

〈N〉 = γL
γD2

, 〈U2〉 = 0 . (3.44)

In this state drift waves exist but without a zonal flow. The growth of the
drift waves is thereby determined by the growth rate γL and, additionally,
the nonlinear interaction γD2. A more interesting solution is

〈N〉 = γD
β
, (3.45)

〈U2〉 = 1

α

(
γL − γD2γD

β

)
. (3.46)

Here, also the zonal flow exists. Interestingly, the level of the drift-wave
turbulence is only determined by the damping rate of the zonal flow γD.
The solution (3.46) also shows that there exists now a threshold for the
growth rate of the drift waves since only positive values for the enstrophy
are meaningful,

γL >
γD2γD
β

. (3.47)

Due to this restriction, the boundaries in phase space are shifted, which
leads to a critical minimal growth rate γcrit [124].17

When the zonal flow damping is neglected, i.e. γD = 0, the system (3.42)
and (3.43) exhibits single burst like events. The phase space portrait of such
dynamics is shown on the left hand side of figure 3.7 and the corresponding

17This corresponds to the Dimits shift regime [125] (collisionless limit, C ≈ 0) where
most of the energy is transferred to the zonal flow and transport values are, therefore,
low [126].
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2

time
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2
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Figure 3.7: Phase space portrait of the predator-prey cycle when the nonlinear
self-regulation of the drift waves is included. The corresponding time evolution of
the drift-wave enstrophy 〈N〉 and the zonal flow enstrophy 〈U2〉 is shown on the
right hand side exemplary for one trajectory. [123, 128]

time evolution, for further illustration, on the right hand side. In a single
burst the complete drift-wave enstrophy is quenched by the zonal flow, which
ends up in a steady state.18

3.4 Damping mechanisms

Various mechanisms are known to determine the damping of poloidal flows
in plasma. In principle, the different damping mechanisms can be grouped
into linear and nonlinear effects.
Collisional damping processes belong to the linear damping mechanisms and
are due to ion viscosity and resistivity [129]. The influence of friction (col-
lisions between, e.g., ions and neutrals) is mostly disregarded since it is
negligible in comparison to the viscosity. But also collisionless damping, like
Landau damping, can play a role, as in the case of the GAM.
Also, several nonlinear damping mechanisms, often referred to as satura-
tion mechanisms, can limit the zonal flow growth. As the zonal flow level
is ultimately determined by the ambient turbulence, the primary instability
(growth and damping rate) essentially defines the saturated state. But the
zonal flow can also be unstable to the Kelvin-Helmholtz instability [130], a
shear flow instability, which has then the role of a tertiary instability.

In the following, viscous damping will be discussed (Sect. 3.4.1) as an
example of collisional damping, and, afterwards (Sect. 3.4.2), the geodesic

18Such a behaviour has been studied in connection with the LH-transition (cf.
Chap. 1). [127]
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3.4 Damping mechanisms

collisions

Figure 3.8: Illustration of flow damping due to ion viscosity. In the initial state, on
the high field side (left), the velocity distribution, with parallel and perpendicular
components, is isotropic. When the particle is moved to the low field side (right),
the isotropy of the velocity distribution is broken because energy is transferred
between the velocity components (conservation of magnetic moment). Due to col-
lisions, the isotropy can be recovered. This momentum loss leads to the viscous
force term in the momentum balance equation. [60]

transfer effect [102] is introduced in more detail, which is the dominant
damping mechanism of the zonal flow in toroidal geometry.

3.4.1 Collisional damping

Due to the toroidal geometry of the considered system, neoclassical effects
occur which contribute to the damping of the poloidal flow. Such an ef-
fect is the ion viscous damping due to magnetic pumping. In any toroidal
geometry the magnetic field has to vary in the poloidal or rather parallel
direction, why the particles will pass through regions of different magnetic
field strength, similar as in a magnetic mirror configuration. The effect on
the velocity distribution is sketched in figure 3.8. For the starting position at
the high field side the velocity distribution of the particles is assumed to be
isotropic. Since the magnetic moment is conserved, the velocity distribution
has to adjust when the particles move to a region of different magnetic field
strength. Therefore, perpendicular kinetic energy is transferred into parallel
kinetic energy, which leads to a deformation of the velocity distribution in
phase space. Due to ion-ion collisions, the distribution can regain isotropy.
This thermalisation process leads to a momentum lack and manifests itself
as a viscous force directed against the poloidal movement. The particles
miss momentum to regain their initial state on the high field side.
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Chapter 3 Zonal flows

divergence has to be added to the momentum balance equation. Its diag-
onal elements are connected to the parallel viscosity, which is caused by
the magnetic pumping just discussed. The off-diagonal elements are related
to gradients in the flow velocity and represent the perpendicular viscosity.
Usually, they are disregarded since they do not alter the general behaviour
of the viscous damping. The poloidal contribution of the parallel viscosity
remains while the toroidal component vanishes because of symmetry and
the radial component is comparatively small.19 In the drive equation (3.17)
viscous damping is then just included as

μii
∂2

∂r2
v̄θ . (3.48)

However, the thermalisation of the velocity distribution crucially depends
on the collision frequency of the ions. Surely, without collisions the process
of momentum redistribution does not work and the viscous damping is zero
(cf. 17). For increasing collision frequency the viscous damping increases
approximately linear. Magnetically trapped particles (banana particles) ad-
ditionally contribute to the velocity relaxation process. The damping gets
maximal when the collision frequency is in the range of the transit frequency
of the ions (plateau regime) because the momentum transfer between the
velocity components is then maximal. For higher collision frequencies the
mean free path decreases and the damping rate gets inversely proportional
(Pfirsch-Schlüter regime). When the ion collision frequency is very high, any
perturbation in the Maxwell distribution will be quickly thermalised and the
velocity distribution is locally in equilibrium.

3.4.2 Geodesic transfer effect

The geodesic transfer mechanism is closely related to the 3D structure of
the zonal flow [131]. As described in section 3.1.1, the poloidal flow is not
divergence free because of the varying magnetic field, i.e. ∇v̄θ ∝ −κg/B.
The field line curvature results in E×B-difts directed towards each other
for positive geodesic curvature κg > 0, leading to a pressure accumulation p̃
in this region. In a tokamak geometry the resulting density structure is
axis-symmetric with poloidal mode number m = ±1, which is essentially the
same spatial structure as the GAM. Via this pressure sidebands the zonal

19Nevertheless, the secondary (return) flow (see Sect. 3.1.1) is also subject to viscose
damping, which has to be added to the damping rate. [102]
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The neoclassical contributions are included via the viscosity tensor, whose
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3.4 Damping mechanisms

pressure sidebands is due to diffusive mixing and dissipation involving the
adiabatic parallel electron response. In the first case, the energy is nonlin-
early transferred from large scales back to smaller scales in the turbulence
because of an inhomogeneous pressure advection, i.e. vE×B∇p̃. The other
part of the free energy in the sidebands goes to the parallel electron dynam-
ics. The inhomogeneous pressure perturbation leads to parallel currents J‖
due to the adiabatic electron response.20 This is the global Alfvén oscilla-
tion, described with the coupling term

〈
J‖ cos(s)

〉
, which is finally dissipated

by resistivity of the plasma.
For simple toroidal geometry, similar to tokamaks, the geodesic transfer

effect can be modelled by a curvature operator of sinusoidal form. With the
additional term the momentum balance equation of the poloidal flow (3.17)
reads

∂

∂t
v̄θ = − ∂

∂r
〈ṽθ ṽr〉 − ωB 〈p sin(s)〉 . (3.49)

The coordinate s represents the parallel direction in the field aligned flux
tube geometry [132], which for a concentric circular geometry is equal to the
poloidal angle θ. ωB is the scaling factor of the curvature operator.

In comparison to the other zonal flow damping effects, the geodesic trans-
fer effect is in total the main energy loss of the zonal flow for typical tokamak
edge scenarios [113]. Damping due to viscosity or friction is comparably low.
Therefore, the magnetic structure plays a crucial role in the damping of the
zonal flows and, at the end, for the suppression of the turbulence.

20In equilibrium, this basically results in the Pfirsch-Schlüter currents, which balance
the pressure gradient.
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flow can couple to the GAM. The major loss channels of the energy in the
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Chapter 4

Data analysis

A statistical description of turbulent systems form the basis of the invest-
igation of turbulence. In this chapter, the basic statistical techniques are
introduced in section 4.1–4.3, following [133, 134] and references therein.
As the drift-wave zonal-flow coupling is governed by three-wave interaction,
bispectral analysis (Sect. 4.4) can be used to investigate the mode coupling.
With the solution of the wave-coupling equation also the energy transfer
between the turbulent modes can be obtained (Sect. 4.5). Finally, the con-
ditional average is introduced in section 4.6, which is a variation of the
ensemble average and can be used to resolve the spatio-temporal dynamics
of turbulent structures.

4.1 Basic principles of statistical analysis

In the description of turbulent flows averaged values are used to characterise
the overall system state. For an absolute continuous, real valued random
variable X with its realisations x, the expected value E(X), or rather the
average1 〈 · 〉, is defined as

〈X〉 ≡ E(X) :=

∫ ∞

−∞

xP (x) dx . (4.1)

Convergence of the integral is assumed. The probability density function
P (x), defined on R, gives the probability P (x) dx of X lying between x and
x+dx. Of course, the density function is normalised, i.e.

∫∞

−∞
P (x) dx = 1.

In the same way as in (4.1), the average of a function solely depending on
X is determined with 〈f(X)〉 = ∫∞

−∞
f(x)P (x) dx. This can be extended to

several random variables2, here f(X1, X2), where the integral is then with
1The naming and nomenclature is ambiguous and in a mathematical sense not strict.

However, the meaning in the specific case throughout this work should be clear.
2Fluctuating quantities of a turbulent flow at different times or different points can,

for example, be thought of as random variables.
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Chapter 4 Data analysis

respect to the joint probability density function P (x1, x2). For statistically
independent variables the joint density function is just the product of the
individual ones and it follows that 〈X1X2〉 = 〈X1〉〈X2〉.

The probability distribution can be described uniquely with the moments
of the order k of a random variable X, defined as mk(X) :=

∫∞

−∞
xkP (x) dx.

For k = 1 this corresponds to the mean value. More often, the central
moments μk(X) are considered, which are defined relative to the mean
with x̃ = x− 〈X〉,

μk(X) :=

∫ ∞

−∞

(x− 〈X〉)kP (x) dx =

∫ ∞

−∞

x̃kP (x) dx . (4.2)

In practice, only the first four moments are considered. So the second central
moment μ2(X), or variance Var(X), is the expected value of the quadratic
deviation to the mean,

Var(X) ≡ μ2(X) = 〈x̃2〉 . (4.3)

Normally, the square root of the variance is shown, which is called the stand-
ard deviation

σ :=
√

Var(X) =
√
μ2(X) , (4.4)

and generally describes the spread of the distribution. For illustration, two
normal distributions with different values σ are shown on the left hand side
of figure 4.1. The third as well as the fourth central moment is normalised
to the standard deviation σ and therefore

S :=
μ3(X)

σ3
. (4.5)

This normalised quantity is the so-called skewness S, which is a measure for
the symmetry of the distribution (see middle of Fig. 4.1). Positive values
S > 0 indicate a slower decaying wing for higher values than the mean and
vice versa for negative skewness S < 0. The kurtosis K, the fourth-order
moment, is defined with respect to the normal distribution. This manifests
itself as an additional constant in the definition,3

K :=
μ4(X)

σ4
− 3 . (4.6)

3Often the kurtosis is defined without this constant, where then the normal distribution
has K = 3.
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�1

�2 �1>

S>0
S >0

K>0

K >0

Figure 4.1: Illustration of the standard deviation (left), the skewness (middle)
and the kurtosis (right) of a probability distribution function. The black dashed
line is a Gaussian distribution.

Figure 4.1 (right) illustrates the meaning of positive and negative values
of the kurtosis K. Its importance is due to the instance that it provides
information on the decline of the wings of the distribution and, therefore, of
rarely occurring large events.4

In addition to the moments of a distribution, for jointly distributed ran-
dom variables X1 and X2 the covariance can be defined as

Cov(X1, X2) := 〈x̃1x̃2〉 . (4.7)

A normalised quantity is obtained when (4.7) is divided by the standard
deviation of both distributions,

ρ =
Cov(X1, X2)

σ1σ2
. (4.8)

This is called the (Pearson) correlation coefficient which measures the linear
dependency of the two variables.5 Its values are bound to the interval [−1, 1],
and ρ = 1 (correlation) implies a total positive linear relation whereas ρ = −1
a negative one (anti-correlation). Independent variables are not correlated
and the correlation coefficient is zero since it is Cov(X1, X2) = 〈x̃1〉〈x̃2〉.6

Another way to characterise the distribution is via the characteristic func-
tions, where the first one is introduced as 7

ϕX(t) = 〈eitX〉 =
∫ ∞

−∞

eitxP (x) dx , (4.9)

4Out of this reason it is often used in the study of intermittency [133, 135].
5This not the only possible definition of a correlation coefficient, and other measures

of a correlation can be sensitive to nonlinear dependencies.
6However, ρ = 0 does not imply that two random variables are deterministically inde-

pendent.
7The definition of the characteristic functions differs in literature.
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which is basically the Fourier transform of the probability density function.
With a series expansion of the exponential in equation (4.9), the charac-
teristic function can be written as the sum of the moments of the distribu-
tion (4.2),

ϕX(t) = eit〈X〉
∞∑

k=0

μk
(it)k

k!
. (4.10)

Further on, the second characteristic function is then defined as

ψX(t) = log(ϕX(t)) , (4.11)

and written as a series

ψX(t) =
∞∑

k=1

κk
(it)k

k!
. (4.12)

Here, the coefficients κk are called the cumulants of X, which are closely
connected to the moments (4.2). Analogously, the characteristic functions
of joint probability distribution are defined. For an arbitrary number of
random variables, the cumulants of the first four orders can be shown to be

κ
(i)
1 = 〈Xi〉 ,

κ
(ij)
2 = 〈x̃ix̃j〉 ,

κ
(ijk)
3 = 〈x̃ix̃j x̃k〉 ,

κ
(ijkl)
4 = 〈x̃ix̃j x̃kx̃l〉 − 〈x̃ix̃j〉〈x̃kx̃l〉 − 〈x̃ix̃k〉〈x̃j x̃l〉 − 〈x̃ix̃l〉〈x̃j x̃k〉 .

(4.13)

This is especially important for Gaussian distributions since then only the
first two cumulants are non-zero, sufficient to completely determine the dis-
tribution functions. From κ

(ijkl)
4 = 0 then follows

〈x̃ix̃j x̃kx̃l〉 = 〈x̃ix̃j〉〈x̃kx̃l〉+ 〈x̃ix̃k〉〈x̃j x̃l〉+ 〈x̃ix̃l〉〈x̃j x̃k〉 . (4.14)

Therefore, the fourth-order moment can be expressed by the sum of second-
order moments. This is called the quasi-normal approximation, which will
be important for the calculation of the energy transfer (see Sect. 4.5.1).
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4.2 Correlation analysis

In turbulence analysis time dependent random variables X(t) are of interest.
The covariance can then be defined as CovX1X2

(τ) := 〈x̃1(t)x̃2(t + τ)〉,
depending on the relative time separation τ . In its normalised form it is
known as the cross-correlation function

CX1X2
(τ) :=

CovX1X2
(τ)

σ1σ2
. (4.15)

Like the correlation coefficient ρ, the correlation function CX1X2
(τ) describes

to which degree the relation between X1 and X2 can be approximated by a
linear relationship. But the correlation function expresses how this depend-
ency changes for a shift of the two signals against each other. A special case
is the auto-correlation function CXX(τ), which, at zero time lag, has the
value 1 (complete correlation).

However, the correlation function cannot only be defined in time but also
in space, depending on the spatial separation. For a turbulent flow, correl-
ation in space, which is the more natural one, and correlation in time are
related and to some degree interchangeable. This is referred to as Taylor hy-
pothesis [136], which is based on the assumption that the convection of the
turbulent structures with the mean flow is fast compared to their evolution
time. A measurement at a fixed point experiences the turbulent structures
moving by as they were frozen in the turbulent flow. Even without a strong
mean flow the convection of the small scale structures by the large ones is
relatively fast, so that the assumption still holds (at least for a part of the
spectrum).

One characteristic of turbulence is that it loses memory of the initial state
for longer times or larger distances, respectively. This means that the cor-
relation function has to decay eventually with increasing time or spatial
separation, i.e. CX1X2

(τ)
τ→∞−−−−→ 0 (analogously for spatial separation). In-

tegration over the spatial correlation function results in a length, referred
to as correlation length, which is a measure for the largest scales in the
turbulence (integral scale, see Chap. 2.1.3). The small scales determine the
behaviour of the correlation function for small separations. This already
suggests a close relation between the correlation function and the cascades,
which will become apparent in the next section.

Of course, the cross-correlation function can also be examined for time
signals at separated spatial locations. When a fixed reference signal is
chosen, the spatio-temporal evolution of quasi-coherent structures can be
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obtained [137]. This can lead to similar results as the conditional averaging
technique presented in section 4.6 [103, 138].

4.3 Spectral analysis

4.3.1 Fourier transformation

Only discrete time traces can be examined in practice. The Fourier transform
of a time trace with N time points tn with n ∈ [0, N − 1] is defined as

X̂(ωm) ≡ Fωm(X(t)) :=
1

N

N−1∑
n=0

x(tn)e
−iωmtn . (4.16)

An equal spacing δt is assumed, which corresponds to the frequency resolu-
tion of δω = 2π/(N δt). The complex valued Fourier coefficients X̂(ωm) are
associated with ωm = 2πfm = mδω with m ∈ [0, N − 1].

The cross-spectrum is given as the product of two Fourier transforms,

HX1X2
(ω) := 〈X̂∗

1 (ω)X̂2(ω)〉 = hX1X2
(ω)eiδX1X2

(ω) , (4.17)

and, via the Wiener-Khintchin theorem, related to the cross-correlation,
i.e. HX1X2

(ω) = F(CX1X2
(τ)). The cross-spectrum measures to which

extent the system can be described by a linear functional dependency. If
X1 = X2, then the result is real-valued and called auto (power) spec-
trum SX(ω), representing the spectral power density in the signal.8 In gen-
eral, the cross-spectrum is a complex quantity and may be expressed with the
cross-amplitude spectrum hX1X2

(ω) and the cross-phase spectrum δX1X2
(ω).

Normalised to the respective auto-spectra, this results in the cross-coherence
spectrum

γX1X2
(ω) =

hX1X2
(ω)√

SX1X1
(ω)SX2X2

(ω)
, (4.18)

which is then restricted to the interval [0, 1]. For a constant phase relation
the coherence does not vanish. When the coherence has substantial values,
the cross-phase spectrum is meaningful and can be calculated from imaginary
and real part of the cross-spectrum,

δX1X2
(ω) = arctan

(
Im[HX1X2

(ω)]

Re[HX1X2
(ω)]

)
. (4.19)

8This shows the before mentioned close connection between the correlation function
and the turbulent cascade as SX(ω) = F(CovXX(τ)).
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4.3 Spectral analysis

The Fourier transform (4.16) is, in principle, not restricted to time series
X(t) but can also be applied to spatial data fields X(s). The spectrum of
the spatial scales S(km) is then a function of the wavevector km = 2π/λm =
mδk, with the wavelength λm. Analogue to the connection between time
and frequency, the spatial separation δs determines the resolution in k-space
which is δk = 2π/(N δs).
When the temporal evolution of a whole data field can be measured (X =
X(t, s)), then the joint spectrum in frequency and wavenumber space can
be calculated, called kf -spectrum

S(k, f) := Fk(Ff (X(t, s))) . (4.20)

This gives information about the frequency for a certain spatial scale and
shows, therefore, directly the dispersion relation (see Sect. 6.3.2). To cover
the statistical average, the ensemble average can be taken as average over
subseries of the whole time series which do not overlap. The resolution is
then limited by the length of the subseries.

4.3.2 Wavelet transformation

The wavelet transformation can be seen as an expansion of the Fourier trans-
form where the signal is decomposed into scales (potentially interpreted as
frequencies) and time. For a time trace of N discrete time points tn = n δt
it is defined as

Wm,a(X(t)) :=

N−1∑
n=0

x(n δt)Ψ∗
a ((n−m) δt) , (4.21)

with n,m ∈ [0, N − 1], specifying the time point tm for which the wavelet
coefficient Wm,a is calculated. By this the signal is bandpass filtered for the
frequency corresponding to the wavelet scale a. In here, the Morlet wavelet
is used as kernel function of the wavelet transformation [139], i.e.

Ψa(t) =
1√
a
π− 1

4 exp

[
i
2π t

a
− 1

2

(
t

a

)2
]
. (4.22)

It is composed of a sinusoidal oscillation and a Gaussian decay. For this
wavelet the scale is connected to the frequency according to ω = (2π +√
2 + 4π2)/2a. Similar as in the case of the Fourier transform, the wavelet

transformation can be transferred to spatial data. Using the wavelet trans-
formation, the cross-spectrum as well as higher-order spectra may thus be
generalised to keep a temporal or spatial resolution [140–142].
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Chapter 4 Data analysis

ωN

ωN

-ωN

-ωN

ω2

ω1

ω1 - ω2 = 0

ω1 + ω2 = 0

I

II

Figure 4.2: Domain of definition for the bispectrum of discrete time traces. The
Nyquist frequency ±ωN is the limit for the frequencies ω1, ω2 and also for the sum
ω1+ω2. The diagonal and counter diagonal are distinguished with the requirement
ω1 −ω2 = 0 and ω1 +ω2 = 0, respectively. Because of symmetry to these axes, the
domain is restricted to the areas I and II. Furthermore, region II can be mapped
onto region I. [143]

4.4 Bispectral analysis

In principle, the definition of the cross-spectrum (4.17) can be extended to
an arbitrary number of factors. But especially for turbulence, the Fourier
transform of the third-order cumulant (cf. Eq. (4.13)) is of major interest.
Important interaction mechanisms, like between drift waves and zonal flows,
are governed by three-wave interaction (see Chap. 3.2) and, therefore, the
bispectrum is an often used quantity. The cross-bispectrum is the triple
product of the Fourier transformations of the signals X1, X2, and X, de-
pending on the frequencies ω1 and ω2,

B(ω1, ω2) := 〈X̂1(ω1)X̂2(ω2)X̂
∗(ω1 + ω2)〉 . (4.23)

The components have to fulfil the resonance condition ω = ω1+ω2. When the
spectrum is calculated from a single signal it is called the auto-bispectrum,
and, also here, it is related to the Fourier transform of the triple correlation
function C(τ1, τ2). The definition (4.23) is easily generalised for spatial data
with the Fourier transformation in k-space.
For discrete time traces the domain of definition is restricted to the hexagon
shown in figure 4.2. The frequencies ω1, ω2, and ω = ω1 + ω2 are limited to
frequencies below the Nyquist frequency ±ωN. Since the Fourier transform
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4.5 Analysis of the energy transfer

B(ω1, ω2) = B(ω2, ω1) = B∗(−ω1,−ω2) (4.24)

= B∗(−ω1, ω1 + ω2) = B∗(−ω2, ω1 + ω2) . (4.25)

With (4.24) follows the symmetry to the diagonal ω1 − ω2 = 0 and counter
diagonal ω1+ω2 = 0, which leaves region I and II in the figure. Furthermore,
with equation (4.25) region II is mapped onto region I which is then the only
non-redundant domain.

As in the case of the cross-spectrum, it is desired to obtain a quantitat-
ive measure of the nonlinear coupling between the three components [69].
The square of the absolute value of the bispectrum is usually normalised to
the cross-spectrum and the auto-spectrum which gives then the quadratic
bicoherence

b2(ω1, ω2) :=
|〈X̂1(ω1)X̂2(ω2)X̂

∗(ω1 + ω2)〉|2
〈|X̂1(ω1)X̂2(ω2)|2〉〈|X̂(ω1 + ω2)|2〉

. (4.26)

With the normalisation9 the bicoherence is limited to the range [0, 1] and,
since (4.25) does not hold, has region I and II as its domain of definition. For
statistically independent modes, with their individual phase θ, the biphase

β(ω1, ω2) := θ(ω1) + θ(ω2)− θ(ω1 + ω2) , (4.27)

is equally distributed on the interval (−π, π] and, therefore, the bispectrum
and bicoherence is averaged out. When the components are quadratically
phase coupled, the bicoherence does not vanish and determines the coupling
strength.10

4.5 Analysis of the energy transfer

The bispectrum (Sect. 4.4) provides a measure of a mode coupling but it
does not show in which direction the energy is transferred. One way to
calculate the energy transfer in the turbulence is to solve the wave-coupling
equation [147]

∂ϕ(k, t)

∂t
= ΛL

k (k)ϕ(k, t) +
1

2

∑
k1,k2

k=k1+k2

ΛQ
k (k1, k2)ϕ(k1, t)ϕ(k2, t) . (4.28)

9Other normalisations can be chosen which then are not necessarily restricted to a
maximal value of 1 [145].

10Spurious values of the bicoherence can occur due to decayed nonlinear processes or
nonlinear measurement effects [146].
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Chapter 4 Data analysis

The evolution of the fluctuating quantity ϕ(k, t), here defined in k-space
but transferable to frequency space, is determined by a linear part and a
nonlinear part. The linear part is build by the growth rate γk and the
dispersion ωk of the wave, included in the linear transfer function ΛL

k (k) =
γk + iωk. The nonlinear part represents the coupling of the different modes,
which obey k = k1 + k2, where the coupling strength is specified by the
nonlinear, or quadratic, coupling coefficient ΛQ

k (k1, k2). For the following
approach the fluctuating quantity is written with the complex exponential
function, i.e. ϕ(k, t) = |ϕ(k, t)|eiΘ(k,t). With this the temporal derivative
can be expressed by the difference quotient as

∂ϕ(k, t)

∂t
= lim

τ→0

( |ϕ(k, t+ τ)| − |ϕ(k, t)|
τ

1

|ϕ(k, t)|

+ i
Θ(k, t+ τ)−Θ(k, t)

τ

)
· ϕ(k, t) . (4.29)

For small time differences τ compared to the evolution of a wave package,
the time derivative in the wave-coupling equation (4.28) can be replaced by
this difference quotient. After some simplifications and rearrangement, a
time discrete version of the wave-coupling equation is obtained,11

Yk = LkXk +
1

2

∑
k1,k2

k=k1+k2

Qk1,k2

k Xk1
Xk2

. (4.30)

Input signal and output signal are now

Xk = ϕ(k, t) , Yk = ϕ(k, t+ τ) . (4.31)

As in the wave-coupling equation (4.28), the transfer functions keep their
role but include an additional phase factor. They are now defined for a
discrete time separation where the (discrete) linear transfer function reads

Lk =
ΛL

k τ + 1− i[Θ(k, t+ τ)−Θ(k, t)]

e−i[Θ(k,t+τ)−Θ(k,t)]
. (4.32)

And the (discrete) nonlinear transfer function is

Qk1,k2

k =
ΛQ

k (k1, k2)τ

e−i[Θ(k,t+τ)−Θ(k,t)]
. (4.33)

11The factor 1/2 is omitted when the summation is restricted to k1 ≥ k2.
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4.5 Analysis of the energy transfer

The transfer functions determine the energy transfer in the turbulence, which
becomes clear when the evolution of the spectral power Pk = 〈ϕ(k, t)ϕ∗(k, t)〉
is considered,

∂

∂t
(ϕ(k, t)ϕ∗(k, t)) =

∂ϕ(k, t)

∂t
ϕ∗(k, t) + ϕ(k, t)

∂ϕ∗(k, t)

∂t
. (4.34)

When the wave-coupling equation (4.28) is inserted into equation (4.34), the
wave kinetic equation is derived,

∂

∂t
Pk = 2γkPk +

∑
k1,k2

k=k1+k2

Tk(k1, k2) . (4.35)

In a stationary state, the linear mechanisms, i.e. growth rate and dispersion,
are balanced by the nonlinear transfer effects. Especially for zonal flows,
which are nonlinearly driven by the turbulence, the nonlinear spectral power
transfer function Tk(k1, k2) is of interest for the analysis, which is given as

Tk(k1, k2) = Re(ΛQ
k (k1, k2) 〈ϕ(k1, t)ϕ(k2, t)ϕ∗(k, t)〉) . (4.36)

4.5.1 Ritz method

To obtain the transfer functions Lk and Qk1,k2

k the wave-coupling equa-
tion (4.30) is transformed into a set of moment equations. This represents
an equivalent problem to the equation of motion and also includes a stat-
istical average. For this purpose, equation (4.30) is multiplied by X∗

k and
averaged which results in

〈YkX
∗
k〉 = Lk〈XkX

∗
k 〉+ 1

2

∑
k1,k2

k=k1+k2

Qk1,k2

k 〈Xk1
Xk2

X∗
k〉 . (4.37)

Just as well, a multiplication of equation (4.30) by X∗
k′

1
X∗

k′

2
and a subsequent

average leads to

〈YkX
∗
k′

1
X∗

k′

2
〉 = Lk〈XkX

∗
k′

1
X∗

k′

2
〉+1

2

∑
k1,k2

k=k1+k2

Qk1,k2

k 〈Xk1
Xk2

X∗
k′

1
X∗

k′

2
〉 , (4.38)

where k = k1 + k2 = k′1 + k′2 holds.12 The procedure, which led to the mo-
mentum equations (4.37) and (4.38), could be repeated on and on, resulting
12For both equations, the transfer functions were pulled trough the average although

they include the phase difference. As in [148], the phase is approximated as the
averaged cross-phase spectrum.
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Chapter 4 Data analysis

in an infinit set of momentum equations (closure problem, Chap. 1.1). At
this place, the Ritz method [149] assumes that the fluctuating quantities
have Gaussian or rather near Gaussian statistics [150]. Then, the fourth-
order moment can be approximated with the sum of second-order moments
(Eq. (4.14)) and 〈Xk1

Xk2
X∗

k′

1
X∗

k′

2
〉 is replaced by 〈|Xk1

Xk2
|2〉.13 This leads

to the simplified version of equation (4.38), which now includes only terms
of third order,

〈YkX
∗
k1
X∗

k2
〉 ≈ Lk〈XkX

∗
k1
X∗

k2
〉+ 1

2
Qk1,k2

k 〈|Xk1
Xk2

|2〉 . (4.39)

With the quasi-normal approximation, the hierarchy of equations is closed
and can now be solved for the discrete transfer functions. Rearranging equa-
tion (4.39) produces the quadratic transfer function

Qk1,k2

k = 2
〈YkX

∗
k1
X∗

k2
〉 − Lk〈XkX

∗
k1
X∗

k2
〉

〈|Xk1
Xk2

|2〉 . (4.40)

And together with equation (4.37) this leads to the linear transfer function

Lk =

〈YkX
∗
k〉 −

∑
k1,k2

k=k1+k2

〈YkX
∗

k1
X∗

k2
〉〈X∗

kXk1
Xk2

〉

〈|Xk1
Xk2

|2〉

〈XkX∗
k 〉 −

∑
k1,k2

k=k1+k2

〈XkX
∗

k1
X∗

k2
〉〈X∗

k
Xk1

Xk2
〉

〈|Xk1
Xk2

|2〉

. (4.41)

Finally, the linear and nonlinear transfer functions, (4.32) and (4.33), and the
spectral power transfer function (4.36) can be calculated from the auto-power
spectrum 〈XkX

∗
k〉, the cross-power spectrum 〈YkX

∗
k 〉, the auto-bispectrum

〈X∗
kXk1

Xk2
〉, and the cross-bispectrum 〈YkX

∗
k1
X∗

k2
〉.

4.5.2 Kim method

In contrast to the Ritz method, now the full fourth-order moments will be
retained for the calculation of the energy transfer. The Kim method [153]
enforces the stationary condition of the spectrum,

∂

∂t
Pk ≈ 〈YkY

∗
k 〉 − 〈XkX

∗
k 〉

τ
= 0 , (4.42)

in order to obtain a complete set of equations. Equation (4.42) results in

〈YkY
∗
k 〉 = 〈XkX

∗
k 〉 . (4.43)

13The additional terms with (k′

1, k
′

2) �= (k1, k2) can be neglected [151, 152].
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4.5 Analysis of the energy transfer

Another equation for the spectral power 〈YkY
∗
k 〉 is obtained when equa-

tion (4.30) is multiplied with the conjugate Y ∗
k and averaged,

〈YkY
∗
k 〉 = Lk〈XkY

∗
k 〉+ 1

2

∑
k1,k2

k=k1+k2

Qk1,k2

k 〈Xk1
Xk2

Y ∗
k 〉 . (4.44)

With equation (4.37) and (4.38) there are now four equations for the four un-
known variables Lk, Qk1,k2

k , 〈YkY
∗
k 〉, and 〈XkX

∗
k〉. For the further procedure,

the system of equations is written in matrix notation. The corresponding
vectors and matrices are defined, for an even mode number l, as follows:

Q =

(
Q

l
2
, l
2

l , Q
l+2

2
, l−2

2

l , Q
l+4

2
, l−4

2

l , . . . , QlN,l−lN
l

)
, (4.45)

A =
(
〈X l

2
X l

2
X∗

l 〉, 〈X l−2

2

X l+2

2

X∗
l 〉, 〈X l−4

2

X l+4

2

X∗
l 〉, . . .

. . . , 〈XlNXl−lNX
∗
l 〉
)T

, (4.46)

B =
(
〈X l

2
X l

2
Y ∗
l 〉, 〈X l−2

2

X l+2

2

Y ∗
l 〉, 〈X l−4

2

X l+4

2

Y ∗
l 〉, . . .

. . . , 〈XlNXl−lNY
∗
l 〉
)T

, (4.47)

F =

⎛⎜⎜⎝
〈X l

2
X l

2
X∗

l
2

X∗
l
2

〉 〈X l
2
X l

2
X∗

l+2

2

X∗
l−2

2

〉

〈X l+2

2

X l−2

2

X∗
l
2

X∗
l
2

〉 〈X l+2

2

X l−2

2

X∗
l+2

2

X∗
l−2

2

〉
...

. . . 〈XlNXl−lNX
∗
lN
X∗

l−lN
〉

⎞⎟⎟⎠ .

(4.48)

The indices run up to the index lN limited by the corresponding Nyquist
frequency. For odd mode numbers the counting index l, in the first two
components of each entry (all in the case of F), is replaced by (l ± 1),
respectively. In the matrix notation, the set of equations (4.37), (4.38),
(4.43), and (4.44) takes the following form:

〈YkX
∗
k〉 = Lk〈XkX

∗
k 〉+Q ·A . (4.49)

〈YkY
∗
k 〉 = Lk〈XkY

∗
k 〉+Q ·B . (4.50)

(B∗)T = Lk(A
∗)T +Q · F . (4.51)

〈YkY
∗
k 〉 = 〈XkX

∗
k〉 . (4.52)
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Chapter 4 Data analysis

From here on it is easy to solve for the transfer functions Lk and Q. First,
equation (4.51) yields the quadratic transfer function

Q = (B∗)T · F−1 − Lk(A
∗)T · F−1 . (4.53)

Then, by either substituting this into equation (4.49) or (4.50), the linear
transfer function is obtained,

Lk =
〈YkX

∗
k〉 − (B∗)T · F−1 ·A

〈XkX∗
k 〉 − (A∗)T · F−1 ·A , (4.54)

or

Lk =
〈YkY

∗
k 〉 − (B∗)T · F−1 ·B

〈XkY ∗
k 〉 − (A∗)T · F−1 ·B . (4.55)

Similar as in section 4.5.1, the linear and nonlinear transfer functions, ΛL
k

and ΛQ
k (k1, k2), can now be calculated. In chapter 9 this method is used to

calculate the energy transfer between the drift waves and the zonal flow.

4.6 Conditional averaging

Up to now the average was assumed to be taken over all available realisations,
but often the average of a variable X1 during a certain state of the system
is desired. When a condition for this state, indicated by variable X2, can
be formulated, the average can be restricted to the realisations where the
condition is fulfiled. There is no constraint on the specific condition, however
the variable is often chosen to be above a critical value, X2 ≥ xcrit. The
average of X1 conditioned on X2 is written as

〈X1|X2〉 :=
∫ ∞

−∞

x1P (x1|x2) dx1 . (4.56)

As for the expected value (Def. (4.1)), P (x1|x2) dx1 is the probability for
the occurrence of variable X1 in the interval [x1, x1 + dx1] but now within
the subensemble. With the restriction to a subensemble, the number of
realisations decreases why often longer time series are needed for converged
statistics.

The definition for the conditional average can be extended to time de-
pendent functions. When the condition can be narrowed down to specify
single time points ti, then also the averaged time evolution around the
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4.6 Conditional averaging

trigger condition can be obtained. For the N trigger points ti, time win-
dows are extracted from the signal X1 as [ti − T/2, ti + T/2]. Here, T is
the interval length, which should be large enough to capture the dynam-
ics and short enough so that the subwindows do not overlap. The average
is a function of the relative time lag τ ∈ [−T/2, T/2] and is calculated as
〈X1|X2〉(τ) = 1/N

∑N
i=1 x1(ti + τ).

Eventually, this can be further extended to time signals at multiple pos-
itions, where the spatio-temporal evolution conditioned on a specific event
occurring in space and time can be obtained [154–156]. The conditional
average is then, additionally, a function of the spatial separation Δr to the
reference signal Xref at a fixed position rref , i.e.

〈X|Xref〉(Δr, τ) = 1

N

N∑
i=1

x(rref +Δr, ti + τ) . (4.57)

τ ∈ [−T/2, T/2]
In this procedure, T should also be large enough to capture a possible spatial
propagation. The result is an averaged signal at the position of the test signal
rref+Δr with respect to the trigger event at the reference position rref . With
a spatially fixed reference and a moving probe, obtaining the test signal, it
is possible to determine the averaged time evolution in larger areas. This
is, e.g., used to obtain the zonal flow dynamics in the poloidal cross section
shown in chapter 7.2.
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Chapter 5

Experiment and diagnostics

Stellarators are best suited to maintain a toroidal low temperature plasma
at stationary conditions. The experiment TJ-K, where the measurements of
this work have been conducted, is introduced in section 5.1. Thereafter, the
working principle of the Langmuir-probe diagnostic is explained (Sect. 5.2.1),
and the application of array configurations to measure complex flow quant-
ities is shown (Sects. 5.2.2 and 5.2.3).

5.1 The Stellarator TJ-K

Originally built at CIEMAT in Madrid, Spain, the stellarator experiment
TJ-K is now located at the University of Stuttgart in Germany. The ex-
periment is of type torsatron, where the toroidal magnetic field is generated
by a single helical field coil (l = 1), with 120 windings, going six times
poloidally around the vacuum vessel (m = 6). The Helmholtz like pair
of coils, with 93 windings each, compensates the vertical field component
to obtain closed flux surfaces inside the vacuum vessel. Due to a poloidal
field component, the field lines are twisted around the torus as to com-
pensate local charge accumulations along the field line. The experiment is
operated with a current up to 2 kA, which corresponds to a magnetic field
strength of roughly 500mT on axis. Currently, three microwave heating sys-
tems at frequencies 2.45GHz, 8GHz, and 14GHz are available with a fourth
(at 28GHz) ready to be installed. A variety of gases can be used in the
experiment with ion masses ranging from mH

i ≈ 1 u up to mKr
i ≈ 84 u. With

all these parameter adjustments at hand, a broad parameter space can be
accessed. Typical parameters are summarised in table 5.1. Although the
achieved parameters are comparatively low, it has been shown that normal-
ised quantities are similar to those in fusion edge plasmas [157, 158]. Fur-
thermore, many studies demonstrated the drift-wave nature of the plasma
turbulence in TJ-K plasmas with a density-potential cross phase close to
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Chapter 5 Experiment and diagnostics

Major plasma radius R0 = 0.6m
Minor plasma radius a = 0.1m
Magnetic field B = 50mT − 300mT
Microwave heating 3 kW at 2.45GHz

2.4 kW at 8GHz
Pulse duration up to 45min
Gas H2, D2, He, Ne, Ar, Kr
Electron temperature Te ≈ 10 eV
Ion temperature Ti ≤ 1 eV
Electron density ne = 1 · 1018 m−3

Rotational transform -ι = 0.13− 0.4

Table 5.1: Typical parameters of the experiment TJ-K.

zero and finite parallel wavelength [88–91]. The magnetic component B̃ in
the turbulence is negligible, with only a small Alfvénic contribution to the
parallel dynamic. Especially for small ion masses the ρs scaling was found to
be close to predictions for drift-wave turbulence [159]. Biasing experiments
result in enhanced long-range correlations [36, 160–162] and increased zonal
flow power proportional to the bias voltage [163].

5.1.1 Experimental setup

The 24 access ports of the experiment guarantee excellent accessibility. They
are located at the bottom (B), top (T), inside (I), and outside (O) of the
torus, dividing the experiments ideally in six identical segments. But, due to
small errors in the magnetic field [164, 165], the toroidal symmetry is broken,
and the flux surfaces at each port with similar position are of slightly different
shape. The numbering is shown on the schematic view in figure 5.1.

For this work two poloidal limiters were built, which were used for all
the experiments herein. The limiters are specifically designed for the ports
O3 and O5 with a large plasma cross section compared to the ones used
previously in [166, 167]. They define the separatrix at the inside and outside
on the midplane (z = 0 cm) at R−R0 = −4.8 cm and 11.6 cm (port O3)
and R−R0 = −5.0 cm and 12.2 cm (port O5).1 Therefore, the separatrix
is everywhere well-defined and the connection length is homogeneous in the
scrape-off layer (SOL).

1This corresponds to the starting position z = 0 cm and Rstart = 63.85 cm at the tor-
oidal position ϕ = 0◦ (port I1), conventionally used in the field line tracing code [168].
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limiter
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interferometer
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helical field coil
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GARM
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limiter
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gas inlet
barometer
mass spectro
-meter Port T3

2D probe unit
Port O6

8 GHz
heating
Port O1

Figure 5.1: Schematic overview of the experiment TJ-K in top and side view.
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Chapter 5 Experiment and diagnostics

Discharges with 2.45GHz and 8GHz microwave heating are analysed. The
2.45GHz magnetron is positioned at port B4 and the klystron, with output
frequencies between 7.9GHz and 8.4GHz, at port O1. With a phased array
antenna, the different frequencies result in a tilt of the emitted beam, where
a frequency of 8.256GHz is used for optimal absorption [169]. A microwave
heating power of up to 3 kW and 2.4 kW, respectively, is available. It was
shown [170–172] that the plasma is ignited at the electron cyclotron reson-
ance and then, when the density is high enough, maintained at the upper
hybrid resonance, both located in the edge of the confined region. In the
case of 8GHz heating, additionally, an O-X-B mode conversion process takes
place and an electrostatic electron Bernstein wave is excited, which is not
limited by density cutoffs and can be efficiently absorbed near the plasma
centre. Generally, higher heating frequencies require higher magnetic fields
and, in the case of 8GHz heating, the shot duration is limited to a few
minutes.

Several standard diagnostics are available to measure plasma parameters.
The pressure and the gas composition are monitored with a pressure gauge
(Pirani and Penning sensor) down to 0.1mPa and a mass spectrometer at
port T3. At port O4 a microwave interferometer is installed, measuring the
line-averaged density, which is used to normalise density profiles from radial
probe measurements. With the probe diagnostics at port O6 also electron
temperature and plasma potential profiles are available (see Sect. 5.2.1).
The knowledge of these parameters is crucial to conduct scaling analysis.
But also the temporal evolution of the turbulence can be studied with this
2D-movable probe unit, further described in section 5.2.2. Due to the good
accessibility and the low temperature plasmas, probe arrays are often used
to measure turbulent fluctuations at multiple points at the same time. For
the analysis of the edge turbulence, especially the zonal flow, the poloidal
Reynolds stress array (Sect. 5.2.3) is used at port O2.

5.1.2 Magnetic field structure

The shape of the flux surfaces and the position of the magnetic axis2 is
determined by the ratio of the currents in the vertical and helical field coils,
rv/h = Iv/Ih. Nested flux surfaces inside the vacuum vessel are obtained for
ratios between rv/h = 49% and 65%, where the standard current ratio is

2Magnetic field parameters can be calculated with a field line tracing code [168] based
on the Gourdon code [173].
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φ = 0° φ = 10° φ = 30° φ = 50°

R R R R

Figure 5.2: Visualisation of the magnetic field geometry of the stellarator experi-
ment TJ-K for standard current ratio rv/h = 57%. Bottom: Corresponding cross
sections at the different types of access ports. The magnetic field strength is calcu-
lated for a value of Ih = 300A. Flux surfaces in the confined region are shown as
solid black lines whereas in the scrape-off layer (SOL) as dashed red. Figures from
reference [101].

at 57%.3 For the values 53%, 56%, 58.5%, and 60% magnetic islands with
increasing mode number arise inside the confined region. A visualisation of a
magnetic flux surface, onto which the magnetic field strength is colour coded,
is shown in figure 5.2. Below are the cross sections at the different types of
access ports for a helical field current of Ih = 300A. The magnetic field
strength varies strongly on the flux surface whereupon the in-out variation
due to toroidicity is overlaid with the band like structure following the helical
field coil. The toroidal periodicity (m = 6) transfers to the sixfold symmetry
in the magnetic field. With the toroidal angle the position of the magnetic

3The current ratio for the field line tracing is slightly different where 56.6% in the code
corresponds to 57% in the experiment. The numbers used herein refer always to the
experimental values.

83

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 5 Experiment and diagnostics

axis varies, crossing the midplane at the inner and outer ports. At these ports
the magnetic flux surfaces are up-down symmetric, whereas for the bottom
and top ports they are elongated, lacking any symmetry. The measurements
where exclusively done at outer ports with triangularly shaped flux surfaces
similar to tokamak geometry.

The magnetic field configuration can be characterised with its local field
parameters. As a field line is a three-dimensional curve, at every point in
space a tangential vector t and a curvature vector κ can be defined,

t = b and κ = (b · ∇)b , (5.1)

where b = B/B is the normalised magnetic field vector. Since the field line
lies on the manifold of the flux surface which it spans, also a normal vector n
and a geodesic vector g = n×b are given at every position on the manifold.
The normal vector is, of course, always perpendicular to the surface, pointing
outwards in the direction of the minor radius. Therefore, the geodesic vector
is also tangential to the surface, pointing into the direction of a curvature
of the field line in the surface. For the description of the field line at every
point on the manifold, the two curvature components can be used. These are
the normal curvature κn and geodesic curvature κg, given as the projection
of the curvature vector κ on the respective axis,4

κn = κ · n and κg = κ · g . (5.2)

For a torus geometry the normal curvature is positive on the inboard side and
negative on the outboard side. As already discussed in chapter 2.2, negative
(bad) curvature is responsible for the destabilisation of micro instabilities and
can lead to a wavelike deformation of the isobars, ballooning at the outside
(ballooning modes). The geodesic curvature is connected to the parallel
return flows since the field lines are bend around the torus and, therefore, link
regions of different magnetic field parameters. The charge separation due
to the diamagnetic currents is short-circuited along the field lines, leading
to the Pfirsch-Schlüter currents, which prevent an electric charging of the
plasma. In the case of the zonal flow and the geodesic acoustic mode, where
the twisted field lines guarantee a divergence free flow field, the geodesic
curvature is responsible for the coupling of the modes and, thereby, their
damping (Chap. 3.4.2). But also the radial drift of trapped particles depends
on the magnitude of the geodesic curvature. In stellarators this can lead to

4For geodesic lines, which are the shortest connection on a manifold, the geodesic
curvature is zero.
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ψ

α

B

S

Figure 5.3: Illustration of the ef-
fect of magnetic shear on a struc-
ture with parallel and radial ex-
tent. As the turbulent structures
are field aligned, a magnetic shear
is transferred to the shape of the
structure. [101, 178]

high particle loss rates. Therefore, a minimal geodesic curvature is one of the
optimisation criteria for advanced stellarators such as W7-X [174, 175]. For
a torus the geodesic curvature has a sinusoidal shape with positive values
on the upper half and negative on the lower half, or vice versa. In the
TJ-K stellarator this is only found at outer ports whereas for other toroidal
angles the trend is more complicated.

The magnetic field is three-dimensional and also the variation in radial
direction has to be considered. The rotational transform -ι, which describes
the twisting of the field lines, depends on the minor radius. Since the tur-
bulent structures are radially extended and mostly field aligned, this rep-
resents a background shear which, in general, has a stabilising effect on
turbulent modes. For a description of the magnetic shear the magnetic
field geometry is considered in a transformed coordinate system {ψ, θf , ϕf},
e.g. Boozer [176] or Hamada coordinates [177], where the field lines are
straight lines with the slope of the rotational transform. The toroidal mag-
netic flux ψ =

∫
B · ∇ϕf dV denotes the radial coordinate and θf , ϕf are the

coordinates in the flux surface. A field line can then be specified with the
parameter α := θf − -ι ϕf . Together with the toroidal flux ψ it is connected
to the magnetic field vector as B = ∇ψ×∇α. In this coordinate system the
local magnetic shear can be introduced as

S :=
(B×∇ψ) · ∇ × (B×∇ψ)

2π|∇ψ|4 = −B · ∇Λ

2π
, (5.3)

where Λ = (∇ψ · ∇α)/|∇ψ|2 is defined as the integrated local magnetic
shear. When there is a local magnetic shear S, radial adjacent field lines
are at some point shifted against each other, deviating from their parallel
course. This is illustrated in figure 5.3.
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Chapter 5 Experiment and diagnostics

5.2 Diagnostics

Probe diagnostics possess very good temporal and spatial resolution but are
invasive. They can only be used in plasmas with temperatures of up to a
few tens of eV.5 While there are many different types of probes, Langmuir
probes have a comparatively simple layout but can be used to obtain several
different parameters like ion saturation current, floating potential, plasma
potential, and electron temperature (Sect. 5.2.1).6 With the combination
of multiple probes (Sects. 5.2.2 and 5.2.3), turbulent fluctuations can be
resolved spatially and important quantities in turbulence like the Reynolds
stress and the vorticity can be obtained.

5.2.1 Langmuir probes

Langmuir probes are made of a tungsten wire (200 μm), which is put through
an insulating aluminium oxide ceramic tube. All the probes used in this work
are additionally shielded as the tungsten wire runs in a ceramic capillary
within a metal tube.7 Only the tip of the tungsten wire (length 2mm) is
exposed to the plasma and forms the active surface.

When the ungrounded probe is exposed to the plasma, the electrons with
their high mobility will charge the probe negatively with respect to the
plasma potential φpl. For ambipolarity the currents from both species are in
equilibrium and the probe potential is at the floating potential φfl. A bias
voltage applied to the probe changes the electron and ion fluxes, which will
result in the shown probe characteristic (Fig. 5.4).8 In the region of strong
negative voltage (U � 0) the current saturates because electrons cannot
reach the probe anymore. This results, under the assumption of cold ions
(Ti = 0), in the ion saturation current

Ii,sat = 0.61enSp

√
Te

mi
, (5.4)

5In fusion experiments they are therefore only used in the SOL.
6For the measurement of the ion temperature other methods have to be used like tunnel

probes, retarding field analyser or spectroscopic methods (Laser induced fluorescence
(LIF), charge exchange recombination spectroscopy (CXRS)).

7This makes the probe more robust, with less vibrations, and the signals do not exhibit
any spikes (random occurring peaks with amplitudes outside the signal span).

8The characteristic is normally plotted with reversed y-axis.
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Figure 5.4: Basic principle of a Langmuir probe. With the variation of the biasing
voltage the characteristic shown on the right hand side is obtained [166].

face Sp.9 10 When the bias voltage is raised, an increasing number of
electrons can reach the probe. Only the electrons, Maxwellian distribution
supposed, which have enough energy to overcome the potential well can
reach the probe, which is expressed by the Boltzmann factor in the electron
current

Ie = −enSp

√
Te

2πme
· exp

(
−e(φpl − U)

Te

)
. (5.5)

The change in the ion current is small in comparison to the electron current
and, therefore, the ion saturation current can be used for the ion current in
cold plasmas. The sum of both contributions (5.4) and (5.5) gives the total
current to the probe

I(U) = Ii,sat+Ie = enSp

√
Te

2πme

{
0.61

√
2πme

mi
− exp

(
−e(φpl − U)

Te

)}
.

(5.6)

When the probe is on floating potential, both contributions balance and the

9The effective probe surface depends on the specific parameters of the plasma and,
therefore, absolute density values cannot be precisely estimated.

10The additional factor is a result of the potential drop in the pre-sheath where the
density already decreases to 61% at the sheath edge [60].
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total current is zero, I(φfl) = Ii,sat + Ie = 0, which results in the relation
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φfl = φpl +
Te

e
ln

(
0.61

√
2π
me

mi

)
. (5.7)

This connects the plasma potential with the floating potential, which can
thus be replaced in equation (5.6). Equation (5.6) is valid up to the plasma
potential φpl where the electron saturation current Ie,sat is reached. But
the current can be increased further since additional electrons from outside
the sheath region can reach the probe. In this region the specific shape of
the characteristic also depends on the geometry of the probe as depicted in
figure 5.4. Only for a planar probe with dimensions large compared to the
Debye length λD =

√
ε0Te/(e2n) the electron current truly saturates.

With an exponential fit to the characteristic the electron temperature can
be obtained, whereas temperature fluctuations cannot be resolved with this
method.11 For TJ-K parameters it has been shown that electron temperat-
ure fluctuations are small [181]. Therefore, fluctuations in the ion saturation
current (measured in the experiment with −90V probe bias) can be associ-
ated with density fluctuations (Ĩi,sat ∝ ñ), and floating potential fluctuations
are approximately equal to plasma potential fluctuations (φ̃fl ≈ φ̃pl) [68].

5.2.2 2D-movable probe unit

The 2D-movable probe unit (port O6) enables measurements in the complete
poloidal cross section of the plasma with a spatial resolution of Δ(R−R0) =
Δz = 1mm. In this work a so-called 3-pin probe is used to obtain radial
background profiles of ion saturation current, floating potential, and elec-
tron temperature, latter measured with a swept Langmuir probe. Since the
effective probe surface Sp (cf. Eq. 5.4) is unknown, the line-averaged density
of the microwave interferometer is used to get absolute density values for the
ion saturation current profile. The profiles are corrected for a variation of
the temperature and the magnetic field, which influences the Larmor radius
and, therefore, the effective probe surface, i.e. Sp ∝ 1/B. The plasma po-
tential can be calculated according to equation (5.7) or directly determined
from the probe characteristic. To this end, the point in the characteristic
where the electron saturation regime is reached, i.e. where the curve changes
from convex to concave, has to be identified.12

With a multi-probe configuration, velocity fluctuations can be measured
as the flow velocity is dominated by the E×B-drift velocity (Eq. 2.18). Using

11Using the conditional sampling technique, the averaged temperature evolution around
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Figure 5.5: Schematic illustration of the 3-pin (left) and the 5-pin probe (right).
Because of the configuration of the probes, electric field fluctuations Ẽ and density
fluctuations ñ can be obtained at the same time, and, hence, turbulent transport
and Reynolds stress can be calculated.

two neighbouring probes (i and i + 1) at a distance Δs, the electric field is
measured and the perpendicular E×B-drift velocity is given by13

ṽE×B ≈ (φ̃i+1
fl − φ̃i

fl)

Δs B
. (5.8)

The magnetic field has been considered perpendicular to the electric field.
When the middle pin (3-pin probe) is biased to measure ion saturation cur-
rent, the turbulent cross-field transport can be obtained, at least in the
midplane, as product of radial velocity and density fluctuation,

Γ = ṽrñ ∝ (φ̃
θi+1

fl − φ̃θi
fl )

rΔθ B
Ĩi,sat . (5.9)

With another pair of probes (5-pin probe) also the poloidal velocity com-
ponent is available, which yields the turbulent Reynolds stress14

R = ṽr ṽθ ≈ (φ̃
θi+1

fl − φ̃θi
fl ) (φ̃

ri+1

fl − φ̃ri
fl )

rΔθ Δr B2
. (5.10)

Due to the 3D structure of the magnetic field, these components are not
identical to the normal and perpendicular velocities ṽx and ṽy, with re-
spect to the magnetic flux surface. Compared to the normal-perpendicular

12Depending on the plasma parameter and the probe geometry this point is difficult
measure.

13The radial velocity component ṽr is directed outwards and the poloidal component ṽθ

is chosen to point in the ion diamagnetic drift direction.
14In the 2D-plane the measured velocity components are projected on the normal and

poloidal unit vector to obtain radial and poloidal velocity, respectively.
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Figure 5.6: Picture of the probe array with Langmuir probes on four flux surfaces.
The inlet illustrates the measurement of radial Er and poloidal Eθ electric field with
which the Reynolds stress can be calculated.

Reynolds stress ṽxṽy, the radial-poloidal Reynolds stress ṽr ṽθ is up to ap-
proximately 10% lower on the outboard side.

These movable probe systems only allow point wise measurements where
an additional stationary probe has to be used for spatio-temporal analyses.
With larger probe arrays the turbulence can be pictured as a whole, resulting
in an advanced diagnostic access.

5.2.3 Poloidal Reynolds stress array

Measurements on a complete flux surface are desired since the zonal flow is a
mesoscopic turbulent structure, characterised as zonal potential perturbation
(cf. Chap. 3.1.1). Therefore, a poloidal probe array was deployed, shown in
figure 5.6, which consists of 128 Langmuir probes with 32 probes on each of
four neighbouring magnetic flux surfaces (FS 1 to FS 4, counted from inside).
In order to get a perpendicular orientation of pairs of probes with respect to
the flux surface, the array, as used in [160], was redesigned with the allowance
of nonuniform probe spacing. Therefore, the poloidal velocity is measured
directly and a phase delay between the velocity components is thus omitted.
The array is designed for the outer port O2 (ϕ = 90◦) with triangular cross
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section and placed in the confined region just inside the separatrix (dashed
white line), where the gradients are steepest. The average poloidal probe
spacing is Δx = 1.4 cm, 1.5 cm, 1.6 cm, and 1.7 cm on the four different flux
surfaces at relative radii R−R0 = 9.5 cm, 10.0 cm, 10.5 cm, and 11.0 cm.
Also with a spatial uncertainty of 2mm, the distances are still below the
typical structure size of 3 cm to 5 cm [77, 91, 159].

With low capacitance cables the probes are connected to amplifiers with
built-in anti-aliasing filters. The data acquisition system allows a sampling
rate of up to 1MHz at a bit depth of 16 bits per sample. Signals of
220 samples (219 samples for 8GHz discharges) are recorded for all probes
simultaneously. For the poloidal probe array it is possible to switch the oper-
ation mode for all 128 probes individually from −90V probe bias to a floating
probe measuring ion saturation current or floating potential, respectively.
Different biasing schemes can be defined, which in different combinations
enable the acquisition of several quantities. The following six schemes were
used for the experiments in this work.

1. All probes are set to measure floating potential. This allows the detec-
tion of zonal flows and the measurement of velocity fluctuations and
related quantities, like Reynolds stress.

2. On FS 1, FS 2, and FS 3 all probes are set to float whereas on FS 4
they alternate with biased probes. The same quantities as in the first
mode are obtained, with reduced resolution, but also rough density
information can be deduced.

3. Probes on all flux surfaces alternate in their operation mode when
going around the circumference. This results in a further reduction of
the resolution but simultaneous two-dimensional potential and density
measurement in the complete edge region.

4. Sections of the poloidal angle are in the same mode of operation.
Gradients of Reynolds stress and density-based pseudo-Reynolds stress
15 can be obtained at the same time.

5. Probes on FS 1 and FS 3 are set to measure floating potential, other
probes are biased. This allows the simultaneous measurement of pol-
oidal wavenumber spectra for density and potential.

15Density fluctuations are treated as potential fluctuations and the pseudo-Reynolds
stress is then calculated as in equation (5.10) (see Chap. 8.2.3).
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6. All probes measure ion saturation current. Density-based quantities
can be calculated with high resolution on all flux surfaces.

The measurement of density and potential fluctuations on a 2D band on
the complete circumference gives the unique possibility to directly detect
the zonal flow and to measure related quantities. This is for instance the
vorticity calculated from the rotation of the velocity field, which is given as

Ω = ∇2
⊥
φ̃fl

B
. (5.11)

For a zonal flow the poloidally averaged vorticity is unequal zero. Also the
flux surface average (indicated by 〈 · 〉) of the Reynolds stress, calculated
locally as product of the velocity components, can be obtained. Since this
is available on different flux surfaces, the radial gradient of the flux surface
averaged Reynolds stress can be calculated,

∂rR = ∂r 〈ṽr ṽθ〉 , (5.12)

which is a measure of the Reynolds stress drive, discussed in section 3.2.
The access to the zonal potential, as the finger print of the zonal flow, is

of great value since it directly captures the dynamics of the drift-wave zonal-
flow system. In combination with the 2D-movable probe system this allows
the visualisation of the turbulent dynamics around the zonal flow occurrence
in the complete poloidal cross section (see Sect. 7.2.1).
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Chapter 6

Background profiles and turbulence

For turbulence studies it is important to document the underlying equilib-
rium plasma, which determines the turbulent state. The scaling behaviour
of the equilibrium plasma parameters in the experiment TJ-K has been sub-
ject of many studies. In this chapter the measurements conducted for this
work, using newly designed poloidal limiter (Chap. 5.1.1), are compared to
the theoretical results. The first part deals with the spatial profiles of the
main plasma parameters (6.1) and how they scale when the experimental
parameters are changed (6.2). In the second part (6.3), the scaling of basic
turbulence characteristics will be considered. A summary of the main results
is given at the end (6.4).

6.1 Background parameter

Two-dimensional profiles of the plasma cross section are demonstrative but,
due to the step wise measurement, require long shot durations. Therefore,
radial profiles of the main plasma parameters have been recorded for scaling
analyses and compared to particle and energy balance studies (Ref. [171]).

6.1.1 Equilibrium profiles

The equilibrium profiles are the result of heating and transport processes.
For the plasmas in TJ-K it was shown that the microwave heating leads to
centrally peaked density profiles and hollow temperature profiles with the
maximum at the separatrix or further out in the scrape-off layer (SOL).
Similarly shaped profiles are obtained for plasmas with poloidal limiters but
with a narrower radial extent. The 2D profiles of ion saturation current Ii,sat
and floating potential φfl for a helium discharge at low magnetic field, where
the microwave of 2.45GHz is resonant, are shown in figure 6.1. All spatial
profiles in this chapter are obtained at port O6 with the 2D-movable probe
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(a) (b)Ii,sat �fl

�
fl

Figure 6.1: Equilibrium profiles of ion saturation current Ii,sat (a) and floating
potential φfl (b) in helium at low magnetic field (#9801), measured in the poloidal
cross section at port O6. Solid lines show closed flux surfaces whereas dashed lines
mark flux surfaces in the SOL.

unit (Chap. 5.2.2). From the ion saturation current profile (a) can be in-
ferred that the density is centrally peaked whereas the floating potential (b)
has a pronounced minimum in the edge of the confined region (solid white
lines). The floating potential is connected to the electron temperature via
equation (5.7). As will be shown further below, the minimum in the floating
potential corresponds to a maximum in the temperature located at the same
radial position.

In figure 6.2, the radial profiles of density ne, electron temperature Te,
floating potential φfl, and plasma potential φpl are shown. The profiles are
measured from the plasma centre at R−R0 = 4.0 cm to and across the sep-
aratrix (R−R0 = 12.3 cm) for all available gases at a neutral gas pressure of
p0 ≈ 8mPa and 3 kW microwave heating power (#10259, #10269, #10291,
#10309, #10968, #11184).1 The plotted lines connecting the measurement
points are the result of a spline interpolation and given as an illustration of
the profile shape. Using the microwave interferometer (port O4), absolute
values of the density are obtained. They are corrected for magnetic field and
temperature variation (see Chap. 5.2.2) as temperature profiles are available
from a swept Langmuir probe, measured simultaneously. The shape of the
density (a) and temperature profiles (b) is similar for all gases, and, in prin-
ciple, the density increases with ion mass. For the scaling of the achievable

1The pressure refers to the nominal pressure measured by the pressure gauge at the
experiment, whereas the real pressure differs by a gas and pressure specific factor.
However, the accessible pressure range of each gas does not always overlap.
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Figure 6.2: Radial profiles of basic plasma parameters for different gases at low
magnetic field. The plasma centre is located at R−R0 = 4.0 cm and the separatrix
at R−R0 = 12.3 cm, marked by vertical lines. The density ne (a) is centrally peaked
whereas the electron temperature Te (b) and the floating potential φfl (c) have their
extreme values in the edge of the confined region. The plasma potential φpl (d) is
relatively flat.

plasma parameters see section 6.1.2. The plasma potential (d), determined
as the maximum slope of the probe characteristic, is basically constant with
only little variation in the edge region. Together with the electron temper-
ature this explains the shape of the floating potential (c) as it is given as the
sum of both quantities.
This demonstrates that the poloidal limiter do not only guarantee a homo-
geneous SOL but also restrict considerable density and temperature values
to the region of closed flux surfaces. Furthermore, the boundary condition
for the potential is well-defined as the floating potential should be close to
zero at the separatrix.2

2This is an advantage for the external control of the potential profile and, therefore,
the radial electric field, which has been demonstrated in biasing experiments [163].
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Figure 6.3: Same representation as in Fig. 6.2 but for high magnetic field. Density
profiles (a) have similar shape for all gases but profiles of electron temperature (b),
floating potential (c), and plasma potential (d) change strongly with the type of
gas. The radial position of the upper hybrid resonance ωUH for each gas is marked
in figure (a).

It has been found [170, 182, 183] that the plasma is ignited at the electron
cyclotron resonance ωce = eB/me and, when the density is high enough, the
microwave is also absorbed at the upper hybrid resonance,

ωUH =
√
ω2
pe + ω2

ce , (6.1)

where ωpe =
√
e2ne/ε0me stands for the electron plasma frequency. The res-

onances lie close to the edge of the confined region or, in the case of the upper
hybrid resonance for 2.45GHz, even in the SOL. Primarily the electrons are
heated, hence the electron temperature profile reflects the microwave power
deposition profile. With a 1D transport model for electron density and tem-
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6.1 Background parameter

the experimentally found shape of the profiles can be reproduced,

∂n

∂t
≈ nn0 n 〈σv〉ion −∇ · Γn , (6.2)

3

2

∂T

∂t
≈ P

n
− nn0〈σv〉ionEion +

1

n
∇ ·Q . (6.3)

The main contribution to the density (Eq. (6.2)) is due to ionisation pro-
cesses (second term) and particle diffusion (last term). Recombination pro-
cesses play a minor role and can be neglected. The temperature evolution
(Eq. (6.3)) results from the heating term (second term) and is balanced by
ionisation (third term) and heat flux (last term). Again, these are the dom-
inant terms where, e.g., neutral gas interaction is not considered. However,
with these contributions the shape of the stationary profiles and the scal-
ing of the main plasma parameters, discussed in the next section, can be
explained. The heating at the edge of the plasma leads to an inward heat
flux which is balanced by ionisation processes. This results in the hollow
temperature profile since the energy is gradually lost along the radius. In
turn, this energy sink is a source for particles in the plasma centre, subject
to diffusion, which explains the centrally peaked density profiles.

In the case of high magnetic field, i.e. 8GHz microwave heating, the
picture is similar (Fig. 6.3). A reduced set of gases is used with similar para-
meters as above (#10263, #10284, #10297, #10374). The density profile (a)
is centrally peaked, and the peak density increases with ion mass. But for
argon and krypton the temperature profile (b) has its maximum clearly out-
side the separatrix. In figure 6.3 (a) the radial position of the upper hybrid
resonance ωUH (Eq. (6.1)) for each gas is marked.3 Due to the high density
values, the absorption layer is shifted further outwards. The altered situ-
ation is also reflected in the potential profiles (Fig. (c) and (d)). Whereas
for hydrogen and helium the minimum in the floating potential is found in
the edge of the confined region, for the heavier gases it is clearly outside
the separatrix. This substantial change in the equilibrium profiles has to be
kept in mind when the scaling of turbulent parameters is considered.
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Figure 6.4: Scaling of the main plasma parameters with different experimental
settings of injected heating power PMW, neutral gas pressure p0, and ion mass mi.
The quantities are combined in an experimental control parameter ξ where the
proportionality is given in the respective figure. The line-averaged values of dens-
ity ne (a,b), electron temperature Te (c,d), and plasma potential φpl (e,f) are used.
Measurements with low magnetic field are shown on the left hand side and high
magnetic field discharges are shown on the right hand side, respectively.
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6.1.2 Equilibrium trends with experimental control

parameters

Because of the flexibility of the experiment, the accessible parameter space
is huge. First, the scaling of the main plasma parameters, density, elec-
tron temperature, and plasma potential, with more intuitive experimental
parameters, like microwave power PMW, neutral gas pressure p0, and ion
mass mi, is shown. With the concrete dependencies the subsequent scaling
of the dimensionless parameters should become more comprehensible.

The transport model, equation (6.2) and (6.3), also allows studies of the
parameter dependency. In the simulations [171] the heating power and the
neutral gas pressure have been varied for different gases. It was found that
an increased heating power results in higher densities due to increased ion-
isation 〈σv〉ion, but the temperature should stay constant since the heating
term P/n is reduced with density. Because particle diffusion Γn and rate
coefficient of ionisation 〈σv〉ion are gas species dependent, the density in-
creases with ion mass, too. On the other hand, the functional dependency
on the neutral gas pressure is more complicated. The density, at least for
lighter gases, increases with neutral gas pressure because of the linear de-
pendency of the ionisation term nn0n〈σv〉ion on the neutral gas density nn0.
Also the heat sink −nn0〈σv〉ionEion depends on the density of the neutrals,
as a result for higher pressures lower temperatures are obtained. For heavy
gases (argon) the ratio of particle and heat transport coefficient depends
strongly on the temperature, which results in the moderate variation with
neutral gas pressure.

These tendencies can be recovered in the achieved experimental values.
The measured values are plotted against the normalised control parameter ξ,
which is chosen as the product of microwave heating power PMW, neutral gas
pressure p0, and ion mass mi with adjusted exponents. In figure 6.4 (a) and
(b) the line-averaged density ne is shown for low and high magnetic fields,
respectively. As suggested from the simulations, the density values are scaled
with the control parameter proportional to PMW · p0 ·m0.5

i . Higher densities
are obtained for heavier gases whereas the values for high magnetic field are
about a factor of 2 higher. The electron temperature Te, averaged over the
confined region, is scaled with ξ ∝ PMW · p−1

0 ·m−1
i (Fig. 6.4 (c) and (d)).

In general, the increase is relatively weak and the temperature values for
hydrogen and deuterium do not follow the trend of an increased temperature

3This is only an indication of the heating position since, in principle, also heating by
Bernstein waves has to be considered in this situation [184].
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Figure 6.5: Relation between the line-averaged density ne and the averaged elec-
tron temperature Te. Low magnetic field discharges (filled symbols) and high mag-
netic field discharges (open symbols) are shown together. The inverse proportion-
ality is visible where temperatures for hydrogen and deuterium are comparatively
low.

with lower ion mass. However, this is in line with the simulations which
predict temperatures for hydrogen between the temperatures for argon and
helium. No big differences are found between low and high magnetic field
but, as already visible from the profiles (Fig. 6.2), the values for neon are
relatively high, compared to the other gases. Also there are no predictions
for the scaling of the plasma potential φpl, the spatially averaged values are
shown in the figure (e) and (f) for low and high magnetic field, respectively.
A scaling parameter ξ ∝ PMW · p−1

0 ·m0.5
i has been found to reveal a general

trend. Especially for high magnetic field, the averaged plasma potential value
increases with ion mass which is the trend expected from figure 6.3 (d). In
summary, also with poloidal limiter the experimentally found scaling agrees
well with the predictions from the simulation.

For the achievable density an analytic formula can be deduced, which is
presented in [185]. The density limit is dependent on the temperature Te,
the heating power P , the neutral gas density nn0, and the ion mass mi,

ne =
P/(nn0Vpl)

[(γD + 3
2
αT )Te + Eion]〈σv〉ion + Erad〈σv〉rad

, (6.4)
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αT = Te,separatrix/Te,centre, the ionisation energy Eion with the rate coef-
ficients 〈σv〉ion, and the equivalent parameters for the energy loss due to
radiation. Because of the many dependencies on experimental parameters, a
direct comparison with the theory is complicated. However, a general trend
is that higher temperatures go along with lower densities. Figure 6.5 shows
the connection of measured densities and corresponding electron temperat-
ures. In principle, the expected trend is visible although the scatter due to
the different other parameters is large. Although it has been suggested [157],
plasmas with hydrogen do not show highest temperatures.

6.2 Dimensionless parameters

The plasma parameters can be changed over a wide range in the experiment.
However, for an investigation of the turbulence more universal parameters
are desired, which describe the state of the turbulent system. For this reason
dimensionless parameters are introduced in the following which characterise
the turbulent length scales and basically reflect the relation between parallel
and perpendicular dynamics. Such parameters allow the comparison of the
findings with theory and other experiments. In general, the averaged values
inside the confined region are plotted with the maximal error shown as error
bars.

6.2.1 Mass ratio μ∗

As shown in chapter 2.4, the connection of parallel and perpendicular mo-
tion is a key point in plasma turbulence. The timescales of the dynamics
perpendicular and parallel to the magnetic field strongly differ since they are
covered by the ion dynamics or the electron dynamics, respectively. There-
fore, the ratio of these timescales is represented by the electron-ion mass
ratio

μ∗ =
me

mi

(
R0qs
L⊥

)2

, (6.5)

which is normalised to the ratio of parallel connection length L‖ = R0qs to
density gradient decay length L⊥. Since the gradient has to be calculated,
each density profile is fitted with a function of the type ne(r) ∝ ne,centre ·
exp
{−(r/σpl)

4
}
, with the peak density ne,centre and the profile width σpl.

The decay length is then given as L⊥ = |∇⊥ ln(ne)|−1, where the minimal
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Figure 6.6: Change of the normalised mass ratio μ∗ with experimental paramet-
ers. The proportionality is given in the figure. All measurements, i.e. low (filled
symbols) and high magnetic field (open symbols), are included.

value is used. As the decay length might scale as the density, the same
experimental scaling parameter (Chap. 6.1.2, Figs. 6.4 (a) and (b)) is chosen,
i.e. ξ ∝ PMW · p0 ·mi

0.5. Surely, with ion masses ranging from mH
i ≈ 1 u

up to mKr
i ≈ 84 u, the values of the mass ratio differ almost by two orders

of magnitude (Fig. 6.6). Compared to this the dependency on the heating
power and neutral gas pressure is relatively weak.

6.2.2 Plasma beta β

The strength of pressure driven interchange instabilities is determined by the
plasma pressure (Chap. 2.2.1). Thus, the interchange instabilities should
become stronger as the plasma beta β = p/(B2/(2μ0)), given as ratio of
kinetic to magnetic pressure, is increased. Like in the case of the mass
ratio, the geometry is accounted for by normalisation through the quotient
of parallel connection length L‖ = R0qs and density decay length L⊥,

β∗ =
β

2

(
R0qs
L⊥

)2

∝ neTe

(BL⊥)2
. (6.6)

The scaling of β and the normalised β∗ is shown in figure 6.7, where both
low and high magnetic field configurations are included. As experimental
control parameter, the product ξ ∝ PMW ·p−1

0 ·m−1
i is chosen. The values of
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Figure 6.7: Scaling of the plasma beta β (a) and the normalised β∗ (b) with exper-
imental parameters. The proportionality is given in the figure. All measurements,
i.e. low (filled symbols) and high magnetic field (open symbols), are included.

the plasma-β fall in the same range for all gases as the product of density and
temperature remains more or less constant. β can be changed by changing B.
In contrast, β∗ decrease with ion mass since the decay length L⊥, which
enters inversely in (6.6), gets larger for lighter gases. Simulations for TJ-K
parameters [88] show that the fluctuations should become more interchange-
like when β∗ is increased towards the ballooning limit (β∗ = 4), where
interchange modes get linearly unstable. However, a pure MHD model does
not include Alfvén dynamics, which can counteract this trend (see [88]).

6.2.3 Drift scale ρs

The typical size of the turbulent structures becomes larger for heavier gases
and is inversely proportional to the magnetic field, like the dependencies
of the Larmor radius. This scaling is captured by the drift scale, which is
the ion Larmor radius at the electron temperature or rather the ratio of ion
sound speed cs to ion gyro frequency ωci,

ρs =
cs
ωci

=

√
miTe

eB
. (6.7)

This quantity can be related to the minor radius, which is then the dimen-
sionless gyroradius ρ∗ = ρs/a. The drift scale connects the distances in real
space to normalised space, which makes it possible to compare turbulent
length scales from different experimental conditions. The scalings of ρs and
ρ∗ are shown in figure 6.8 against the control parameter ξ ∝ PMW · p−1

0 ·m2
i .
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Figure 6.8: Scaling of the drift scale ρs and the normalised ρ∗ with experimental
parameters. The proportionality is given in the figure. All measurements, i.e. low
(filled symbols) and high magnetic field (open symbols), are included.

Open symbols show the measurements with high magnetic field, which res-
ults in smaller drift scales. The change due to temperature is comparat-
ively small. For the development of homogeneous turbulence, the drift scale
should be small compared to the system size. For argon and krypton dis-
charges at low magnetic field this condition is rather poorly satisfied. How-
ever, it was shown that the scaling of the poloidal correlation length, which
can be regarded as turbulent structure size, scales significantly less than
gyro-Bohm like with ρ0.43s [103, 159, 186]. This issue is addressed again in
section 6.3.2.

6.2.4 Collisionality C

As shown in chapter 2.3.4, electron collisions can lead to a phase shift
between density and potential fluctuations and thus to a destabilisation of
the drift waves. The perturbation of the density potential coupling is de-
scribed by the collisionality, which is the electron collision frequency νe norm-
alised to the electron gyro frequency ωce compared to the parallel wavelength,

C =
νe
ωce

1

(k‖ρs)2
∝ B ne

k2‖ mi Te
5/2

. (6.8)

The parallel wavenumber k‖ has been obtained from array measurements in
a previous work [89, 187] and is normalised with the drift scale ρs. Figure 6.9
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Figure 6.9: Scaling of the electron collision frequency νe (a) and the normalised
collisionality C (b) with experimental parameters. The proportionality is given
in the figure. All measurements, i.e. low (filled symbols) and high magnetic field
(open symbols), are included.

shows the scaling of both, collision frequency (a) and corresponding collision-
ality (b), scaled with the parameter ξ ∝ PMW · p0 ·m0.5

i . Since the collision
frequency is given as the inverse of the collision time, νe = τ−1

e ∝ ne/T
3/2
e ,

the increase with neutral gas pressure is not surprising. Through the norm-
alised parallel wavelength (k‖ρs)

2, the collisionality depends on the ion mass
which explains the strong decrease for heavier gases. Mainly by changing
ion mass, the collisionality can be varied by about four orders of magnitude
reaching different regimes of drift wave dynamics. So, especially for hydro-
gen and deuterium a destabilisation of the drift waves and, therefore, large
fluctuation levels are expected (see Sect. 6.3.1).

6.2.5 Parameter dependency

Until now the scaling of the dimensionless parameters was studied with re-
spect to the parameters used in the experiment but in this section the interre-
lationship between them is examined. This is important for scaling analyses
since every parameter can have a specific influence on the turbulent system.
In this work the main focus is on scaling with collisionality. Therefore, the
relation to the collisionality C is shown in figure 6.10. The mass ratio μ∗

(a) increases with collisionality since both depend inversely on the ion mass.
But still, the scaling shows the inverse trend for each gas due to the depend-
ency on the density gradient decay length. In general, the normalised beta
has a decreasing trend with collisionality. The scatter in β∗ for helium and
hydrogen is thereby quite large and the values for krypton are a bit off. With
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Figure 6.10: Dependency of dimensionless parameters on the collisionality. The
mass ratio μ∗ (a) increases with collisionality C whereas the plasma beta β∗ (b)
and drift scale ρ∗ decrease. All measurements, i.e. low (filled symbols) and high
magnetic field (open symbols), are included.

respect to the drift parameter ρ∗ the relationship is relatively clear where a
collisional scaling corresponds to an inverse ρs-scaling. The comparison of
the different dimensionless parameters shows that the discharges are barely
dimensionally similar and, therefore, effects ranging from different physical
mechanisms can contribute to the scaling of turbulent quantities. This has
to be kept in mind for the following scaling analysis.

6.3 Turbulence

Along with the background parameters of the plasma also the turbulence
based on it changes. At first (6.3.1) the spatial distribution of the fluc-
tuation level and the scaling with collisionality is investigated. Later on
(6.3.2) the spectra of density and potential are analysed in frequency and in
wavenumber space.

6.3.1 Fluctuation level

The plasma turbulence suspected in the experiment is driven by gradients in
the background plasma parameters and, therefore, the strength of the fluc-
tuations should increase towards the edge. From the time traces recorded
with the 2D-unit, the radial dependence of the fluctuation levels of the relev-
ant parameters, density and potential, is obtained. The density fluctuation
level is calculated from ion saturation current as σn = ñe/ne0 = Ĩi,sat/Ii,sat0
and the fluctuation level of the potential from the floating potential, i.e.
σφ = eφ̃/Te ≈ eφ̃fl/Te.
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Figure 6.11: Radial profiles of the fluctuation level for different gases at low
magnetic field. The plasma centre and the separatrix are marked by vertical lines.
In figure (a) the fluctuation level of the density ñe/ne0 and in figure (b) of the
potential eφ̃/Te is shown. The fluctuation level increases towards the edge and, in
general, is higher for smaller ion mass.
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Figure 6.12: Same representation as in Fig. 6.11 but for high magnetic field.
Especially in the potential (figure b), argon and krypton show very high fluctuation
levels at the edge compared to lighter gases.

Figure 6.11 shows the radial profiles of the fluctuation level for different
gases in low magnetic field discharges (same as in chapter 6.1.1). In both
cases, density (a) and potential (b), the fluctuation level increases towards
the separatrix with a maximum in the edge where the gradients are strongest.
This increase with radius is a well known feature of magnetically confined
plasmas which can be roughly modelled as 1/ne [188–190]. Also the absolute
values of density and potential fluctuation amplitudes are in the same range
and increase for lower ion mass. This already suggests a destabilising effect
of an increased collisionality, which will be discussed further below.
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Figure 6.13: Scaling of the fluctuation level with the collisionality for low magnetic
field discharges. The fluctuation level for density ñe/ne0 (a) and potential eφ̃/Te

(c) increase with collisionality C. In the case of the density, this trend becomes
clearer (figure b) when the signal is filtered for drift-wave turbulence. See text for
further information.
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Figure 6.14: Fluctuation level of density (a) and potential (b) for high magnetic
field discharges. An increasing trend can be seen but, in the case of argon and
krypton, the potential fluctuations are too high. Electron temperatures rescaled
by a factor of 2.5 would lead to fluctuation amplitudes similar to the density (c).

The picture is similar for the discharges at high magnetic field, which is
shown in figure 6.12. For density (a) and potential (b) the fluctuation level
increases towards the edge. But whereas the fluctuation amplitudes for the
density only slightly increase with increasing ion mass, the fluctuations of
the potential in the plasma edge are much higher for argon and krypton.
This seems to be connected to the severe change in the profile form found in
section 6.1.1. The standard deviation of the potential in argon and krypton
plasmas increases strongly towards the edge but, at the same time, the
temperature values are moderate (cf. Fig. 6.3). This suggests that, due
to the outward shifted heating position, the temperatures cannot reach high
values.

The scaling behaviour of the fluctuation amplitudes with collisionality
will now be investigated in more detail. A higher collision frequency can
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lead to a destabilisation of the drift waves and, therefore, to an increased
fluctuation level. For low magnetic field discharges the collisionality scaling
is shown in figure 6.13 for density (a) and potential (c). To not only rely on
single point measurements, the fluctuation levels are calculated from data
obtained with the poloidal probe array which covers the edge region of the
confined plasma on the complete poloidal circumference. The fluctuation
amplitudes are averaged over the full poloidal angle. The density fluctuation
level shows a slight increase with increasing collisionality when different gases
are considered. However, the trend for each individual gas is rather reversed.
The changing plasma-β, which scales inversely to C, could influence the
scaling since it is thought as a drive of interchange modes (cf. Sects. 6.2.2
and 6.2.5). This is supported by the mixing length argument ñe/ne0 =
1/k L⊥ [191]. Wavenumber k and density decay length L⊥ scale inversely
with the collisionality, thus a strong decrease of the fluctuation level with
collisionality would be expected when interchange modes would dominate
the turbulent fluctuations. With the poloidal probe array it is possible to
distinguish different modes in the turbulence by calculating the kf -spectrum
(Chap. 4.3.1). Since the drift waves propagate into the electron diamagnetic
drift direction (Chap. 2.3.1), they can be identified with modes possessing
positive wavenumbers or mode numbers, respectively. When this part of the
spectrum (mθ > 0) is considered for the collisional scaling (Fig. 6.13 (b)),
an increase with collisionality is found. The scaling resembles that of the
potential (c) closely, clearly suggesting the destabilising effect of electron
collisions.

For the high magnetic field discharges (Fig. 6.14) the trend is somewhat
similar. The density fluctuations (a) show only a slight increase with colli-
sionality with somewhat lower values for hydrogen. A decreasing trend for
the individual gas species is missing, pointing to a minor role of interchange
turbulence. As in the radial profiles (Fig. 6.12 (b)), very high fluctuation
amplitudes in the potential (b) are found for argon and krypton. Due to the
shift in the heating position, the electron temperatures inside the confined
region seem to be too low to obtain reasonable fluctuation values for the
potential (see 6.1.1). But also a poloidal asymmetry in the temperature pro-
file exists [166, 167]. Thus, the temperature values from the radial profiles
might be underestimated. With the assumption of electron temperatures
two and a half times larger for these gases, i.e. 10 eV ≤ Te ≤ 20 eV, which
are still reasonable, fluctuation amplitudes similar to the density would be
reached (Fig. 6.14 (c)). Nevertheless, the fluctuation level, with regard to the
individual gas species, clearly scales with collisionality suggesting a destabil-
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Figure 6.15: Frequency spectra of the ion saturation current Ĩi,sat (a) and the
floating potential φ̃fl (b) for different gases at low magnetic field. The data is
measured with the poloidal probe array on the outboard side at port O2. All gases
show broad turbulent spectra, however, dominant modes can be found for heavier
gases.

isation of the drift waves with increasing collisionality. Overall, the ob-
served scaling is consistent with simulations with the drift-Alfvén turbulence
code DALF3 [86] which have been performed for TJ-K parameters [88, 157].

6.3.2 Spectra

A feature of turbulence is the existence of cascades and with it the charac-
teristically shaped turbulent spectra. In figure 6.15 the frequency spectra
of density (a) and potential fluctuations (b) are shown for various gases in
low magnetic field discharges (#10261, #10268, #10289, #10305, #10969,
#11178). Time traces from a probe of the poloidal probe array, located at
the outboard midplane, are used. The spectra are not corrected for a po-
tential background velocity and could be modified by an E×B-drift, which,
however, should be small. All cases show a broad turbulent spectrum with
a flat region up to 10 kHz–20 kHz, which is followed by an exponential decay
up to 200 kHz. The spectra for the light gases are especially smooth while
for heavy gases, like argon and krypton, individual modes can be distin-
guished. This was also observed in [101] where quasi-coherent modes seem
to get more intense for higher ion mass and neutral gas pressure. Coherent
modes can generally occur in two-dimensional turbulence and are for itself
an interesting phenomenon [192–195]. They are like droplets of laminar
flow embedded in the background turbulent flow and can alter the turbulent
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Figure 6.16: Wavenumber spectra of the ion saturation current Ĩi,sat (a) and the
floating potential φ̃fl (b) for different gases at low magnetic field. The wavenumbers
are normalised to the structure size which was shown to be proportional to ρ0.43s .
For this scaling the density spectra fall together.

spectra significantly. In view of the turbulent zonal flow drive, such modes
could capture turbulent energy which is then, depending on their spectral
position, not available for the zonal flow. Nevertheless, the measurements in
heavier gases will not be excluded since coherent modes are an integral part
of the turbulent system.

More relevant than frequency spectra are spectra in wavenumber space,
which are directly related to the physical space. In figure 6.16 they are shown
for density (a) and potential (b), taken from the same measurements as the
frequency spectra. As the frequency spectra, also the wavenumber spectra
show a broad inertial range for all types of gas. Since the structure size
changes with ion mass, the wavenumbers have to be scaled with the turbulent
length scale, typically represented by the drift scale ρs (Sect. 6.2.3). In a
previous work [103, 159, 186], the structure size in the poloidal cross section
has been measured by means of a matrix array with which a detailed scaling
behaviour of the density structures could be obtained. It was found that the
poloidal correlation length exhibits a scaling between Bohm and gyro-Bohm
with Lθ ∝ ρ0.43s . With this scaling factor the density spectra fall together,
which confirms the previously found results. In the case of the potential the
factor should be a bit smaller for a complete overlap.

Figure 6.17 (a) and (b) show typical wavenumber-frequency spectra (kf -
spectra) of ion saturation current and floating potential measured in helium
discharges. The broad turbulent spectrum is dominated by contributions at
positive wavenumbers indicating a propagation into the electron diamagnetic
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Figure 6.17: Logarithmic wavenumber frequency spectra of ion saturation cur-
rent Ĩi,sat (a) and floating potential φ̃fl (b) are shown for low magnetic field dis-
charges in helium (#9984, #9983). Both spectra are dominated by modes with
positive wavenumbers, associated with drift waves. The kθ=0 mode is the zonal
flow, which is not present in the density.

drift direction, which are associated with drift waves. Also modes propagat-
ing in the opposite direction, i.e. ion diamagnetic drift direction, can be
found in both density and potential. The propagation direction would point
to ITG turbulence, but the ion temperatures are suspected to be small. Inter-
estingly, a similar finding was made by L. Cui at CSDX [196, 197] with similar
plasma condition as the TJ-K experiment. So far the nature of this mode
could not be identified and this topic is still under investigation. A domin-
ant m=4 mode is plausible since drift waves have finite parallel wavelength
(k‖ �= 0) and the experiment has a rotational transform of -ι ≈ 1/4 [89, 198].
The kθ=0 mode in the potential spectrum is apparent, while not present in
the density. This is the signature of the zonal flow, which is known to be
a pure potential mode, and it also excludes the possibility of a pure mean
background fluctuation since the density is not changed. In comparison with
a similar analysis [101] the zonal flow seems more prominent due to the well-
defined boundary conditions by the limiter, also in the case of low magnetic
field. The characterisation of the zero potential mode will be the topic of
the following chapter.
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6.4 Summary of the chapter

As the equilibrium profiles are the basis for the development of the plasma
turbulence, the analyses in this chapter aim at exploring the accessible para-
meter space and at verifying basic turbulence characteristics. In contrast to
previous works, the measurements have been conducted in plasmas with pol-
oidal limiters while using microwave heating at 2.45GHz (low magnetic field)
and 8GHz (high magnetic field). Due to the flexibility of the experiment,
a variety of gases could be used to extent the parameter range. The main
results can be summarised as follows:

• With poloidal limiter the overall plasma parameters and turbulence
characteristics are unchanged compared to unlimited discharges, but
the profiles are narrower with considerable values of density and tem-
perature restricted to the confined region. The density is centrally
peaked and the temperature has a maximum in the edge. In case
of high magnetic field argon and krypton show altered profile forms,
which seem to be due to the outward shifted heating position as dens-
ity increases. The profile form and the scaling of averaged density and
temperature values fit well to the predictions of a simple transport
model.

• The ion mass and the density, which scales mainly with neutral gas
pressure, have strongest influence on the dimensionless parameters.
The mass ratio μ∗, plasma beta β∗, and drift parameter ρ∗ vary in
the range of up to two orders of magnitude. In the case of the col-
lisionality C four orders of magnitude are accessible, which makes it
possible to gradually change the collisionality in a continuous trans-
ition from the adiabatic regime (C � 1) to the hydrodynamic regime
(C � 1). This is especially important for the investigation of the zonal
flow driving mechanism.

• As found in other experiments, the density and potential fluctuation
levels increase towards the edge and scale with collisionality. This is ex-
pected from simulations for TJ-K parameters and points to a destabil-
isation of the drift waves through an altered density-potential coupling.
A strong influence of a changing plasma beta is not observed. Further-
more, spectra in frequency and wavenumber space show a shape typical
for turbulence and confirm previous measurements of the structure size
which scales with ρ0.43s .
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• The kf -spectra reveal a dominant zero potential mode, not visible in
the density, which is the signature of the zonal flow. In comparison
with measurements without poloidal limiter the zonal flow seems to be
more prominent.
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Chapter 7

Zonal flows

As shown in chapter 6.3.2, the zonal flow, characterised as a zonal potential
mode, is an integral part of the plasma turbulence in the experiment. With
the special multi-probe configuration deployed in this work the zonal poten-
tial is directly accessible and will be studied in more detail in this chapter.
First, the basic characteristics of the flux surface averaged potential, as well
as their scaling behaviour, will be studied (Sect. 7.1). Including the movable
probe unit, the spatio-temporal evolution in the poloidal cross section can
be recovered, which is presented in 7.2. Finally, the zonal potential fluctu-
ations are analysed in frequency space where the spectral power distribution
is investigated (Sect. 7.3).

7.1 Characteristics of the zonal potential

Poloidal probe arrays are the ideal diagnostic tool to detect zonal flows as
such probe configurations directly offer access to the potential fluctuations
on the complete poloidal circumference at once. Figure 7.1 (a) shows the
poloidally resolved potential fluctuations for 2ms in a helium plasma at
p0 = 4.3mPa and PMW = 2 kW at low magnetic field. The data has been
measured on the flux surface at R−R0 = 10.5 cm (FS 3) with the Reynolds
stress array at port O2 (cf. 5.2.3). A poloidal angle of θ = 0·π denotes the
outboard midplane, where the outboard side ranges from −0.5π to 0.5π. On
the outboard side (low field side) the fluctuations are more intense which
correlates with the typical ballooning envelope. The chaotic appearance and
the propagation of the turbulent structures into negative θ-direction, i.e.
electron diamagnetic drift direction, suggests fully developed drift-wave tur-
bulence (see Sects. 2.3 and 6.3). Below (Fig. 7.1 (b)), the corresponding
poloidal wavenumber spectrum, directly calculated from the turbulent fluc-
tuations, is shown. For a better visibility of the k=0 mode the mirrored
spectrum is plotted as well. At, e.g., τ ≈ 15.1ms a strong zonal mode
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(a)

(b)

(c)

Figure 7.1: Potential measurements in a helium discharge with p0 = 4.3mPa and
PMW = 2 kW at low magnetic field (#10320). The contour plot at the top (a)
shows the raw signal of the floating potential fluctuations on a complete poloidal
circumference. A poloidal angle of θ = 0·π relates to the midplane on the outboard
side. Below (b) is the corresponding wavenumber spectrum. The time trace of the
flux surface averaged potential, i.e. kθ = 0, is shown in (c). Already in the raw
time traces the prominent zonal potential mode is visible (e.g. τ ≈ 15.1ms).
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7.1 Characteristics of the zonal potential

emerges which lasts up to 100 μs. Also in the raw signal (Fig. 7.1 (a)) the
zonal potential mode is indicated, which underlines the significance of the
zonal mode in the turbulent system. The occurrence of the zonal potential
mode seems to involve modes with higher wavenumbers. They get strong
just before the zonal mode arises which is the typical dynamic of the drift-
wave zonal-flow system (see 3.3 and [38, 101]). In figure 7.1 (c) the signal
of the flux surface averaged potential, equivalent to the time trace of the
k=0 mode, is shown. For the zonal flow occurrence at τ ≈ 15.1ms the
flux surface averaged potential is positive and gets larger than 2σ. But also
events where the zonal potential is strongly negative occur, which corres-
pond to zonal flows with reversed flow direction. The flux surface averaged
potential is directly the signal of the zonal flow, but, as all turbulent sig-
nals, it strongly fluctuates around its mean since it is also subject to random
fluctuations and noise. Often large fluctuations in the zonal potential are
identified as zonal flows, however, an exact discrimination is difficult.

In the next step, the flux surface averaged potential signal will be examined
further as it contains all the dynamics of the zonal flow. Figure 7.2 (a) shows
the PDF of the zonal potential. The signal distribution is close to a Gaussian
distribution, which is shown in the figure as dashed curve for comparison.
This demonstrates the turbulent nature of the zonal potential with the ac-
tual zonal flow embedded into the turbulent dynamics. Large fluctuations
do not dominate the signal as the kurtosis K is close to zero. The vanish-
ing skewness S shows the symmetry of the distribution, which implies that
neither positive nor negative zonal flows are preferred. Here, a positive po-
tential fluctuation is denoted as positive zonal flow and vice versa. For the
detection of single zonal flow events the time trace is scanned for time points
where a trigger condition is met (Chap. 4.6). The distribution of the number
of trigger events depending on the trigger value is shown in figure 7.2 (b).
Throughout the work, the trigger value is specified in terms of the standard
deviation σ. A negative standard deviation signifies triggering on negative
amplitudes, i.e. falling below the trigger value. As trigger window, the time
which is excluded after a trigger time point, 128 μs are used. The figure
shows that, also when only trigger events alone are counted, the distribution
is close to a Gaussian. With more than 103 events at a trigger value of 2σ
the number of realisations is high enough to cover the statistical average.
For the trigger value |2σ|, which is normally used, the waiting time stat-
istics, together with the cumulative probability, is shown in figure 7.2 (c).
The abscissa is scaled to the trigger window (here 128 μs). A maximum is
found for one and a half of the window time length which is roughly 200 μs,
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Figure 7.2: Statistical distribution of the flux surface averaged potential signal
(#10320). Figure (a) shows the power distribution function (solid line) together
with the normal distribution (dashed line). The distribution of the trigger events
depending on the trigger level is shown in (b). All distributions are close to a
Gaussian distribution. In figure (c) the corresponding waiting time statistics for a
trigger value of |2σ| is plotted.

then the frequency of occurrence decreases exponentially for longer intervals.
The most frequently occurring waiting time corresponds to a fast repetitive
occurrence of the zonal flow which can also be observed in figure 7.1. The
characteristics are close to ideal fluctuations, and it is clear that the zonal
flow, or a specific pattern, is hard to distinguish from noise or a random
fluctuation which is not driven by the ambient turbulence. Nevertheless,
the flux surface averaged potential is the best diagnostic access to the zonal
flow, and reaching a threshold value is used as trigger condition in the rest of
this work. It would be interesting to apply more sophisticated methods like
clustering algorithms with which different dynamics of the turbulent system
could be distinguished but this is left for future work (Chap. 10).

For a trigger value of 1σ the collisional scaling of the number of trigger
events (a,c) and the corresponding mean waiting time (b,d) are shown in
figure 7.3. At the top are the pictures for low magnetic field and below for
high magnetic field. The trigger counts are comparable as the measurement
time is twice as long for low magnetic field. In both cases the count of
trigger events decreases for lower collisionality C, which is more pronounced
for high magnetic field. As a decreased number of counts results in a longer
time between them, the waiting time shows the inverse trend and increases
for lower collisionality. Since the trigger value is always specified with respect
to the standard deviation, this shows a change in the dynamic of the system.
In general, the turbulent dynamics seem to get slower for lower collisionality
and higher ion mass.
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Figure 7.3: Collisional scaling of trigger events for low (a,b) and high magnetic
field (c,d). The total number of trigger events (a,c), where all occurrences above 1σ
are counted, seems to decrease with collisionality C. Therefore, the interval time
between the events increases accordingly.
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Chapter 7 Zonal flows

7.2 Structure and dynamics

With the conditional averaging and cross-correlation methods the spatio-
temporal evolution of turbulent structures can be obtained. For the analysis
of the zonal flow, the flux surface averaged signal is used as trigger or ref-
erence signal. At first (7.2.1), the dynamics in the poloidal cross section is
presented, which is obtained by the combination of the movable probe unit
and the poloidal probe array. The temporal evolution on the complete flux
surface is shown subsequently (7.2.2).

7.2.1 Dynamics in the poloidal cross section

The poloidal probe array (Chap. 5.2.3) is situated in the edge region of the
confined plasma on the complete circumference in the poloidal cross section.
This results in a good spatial resolution in the poloidal direction but the
resolution is rather poor in the radial direction. On the other hand, the
2D-movable probe unit (Chap. 5.2.2) has a very good spatial resolution but
needs a reference probe for spatio-temporal analyses (cf. Chap. 4.6). Both
measurement techniques were combined to reliably detect the zonal potential
perturbation and to obtain the turbulent fluctuations in the poloidal cross
section. For this purpose the data of the array is recorded simultaneously
for each step of the movable probe. With the large number of probes, this is
a challenging task for the data acquisition system, which limits the number
of steps and, therefore, the achievable spatial resolution.

For a half profile (R−R0 ∈ [5 cm, 12.5 cm]) at port O6 the potential and
density fluctuations are shown for three time points relative to the trigger
position in figure 7.4. The potential is shown at the top (a–c) and the density,
for the same time points, below (d–f). The data of the movable Langmuir
probe is conditionally averaged with 2σ in the zonal potential fluctuations
from the array. Subwindows are centred on the maximum near the trigger
event. At the first time point at τ = −94 μs, well before the trigger time
point (τ = 0 μs), a prominent turbulent structure is visible in figures (a)
and (d). It appears in the potential and the density with a small cross-
phase and propagates into the electron diamagnetic drift direction. It can
thus be identified as a drift wave (Sect. 2.3). In the next frame (τ = 7 μs),
shortly after the trigger condition is reached, in the density (e), again, a
localised structure is visible whereas in the potential (b) the appearance of
a zonal mode can be seen in the edge of the confined region. This is the
expected structure of a zonal flow which exists in the potential but not in
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Temporal evolution of the potential (top row) and the density (bottom
row) in the poloidal cross section. The figures are ordered chronologically from
left to right with the time relative to the trigger time. The signals from the 2D-
movable Langmuir probe are conditionally averaged with φ trigger from the surface
averaged potential measured with the poloidal probe array at the distant port O2.
Flux surfaces in the SOL are plotted as dashed lines.
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the density [33]. With a radial extent of roughly 2 cm (kr = 50m−1) the
structure size is in the range of the dominant drift wave structures. Soon
after the trigger condition is reached the zonal flow has vanished and another
drift wave structure still remains. In the scrape-off layer (SOL), marked
as dashed lines, turbulent structures propagating into ion diamagnetic drift
direction (upwards) are found. These so-called blobs have been characterised
in various studies [166, 180, 199, 200] but it is unclear if they are linked with
the zonal flow occurrence. As this technique combines measurements at two
different toroidal positions with a separation of ϕ = 120◦, this analysis shows
the existence of long-range correlations also in the toroidal direction. Thus,
the zonal potential measured with the array seems indeed to correspond to a
potential perturbation on a complete flux surface (kθ = kϕ = 0) with a finite
radial extent (kr �= 0) typical for zonal flows. After the spatial structure of
the zonal flow has been analysed the temporal evolution is examined in more
detail in the next section.

7.2.2 Dynamics on a flux surface

To obtain the averaged evolution around the zonal flow occurrence the signal
of the poloidal probe array is conditionally averaged with φ trigger from the
surface averaged potential, as done in the analysis in 7.2.1. Since zonal flows
exist as positive and negative potential fluctuation, both cases, calculated
with oppositely signed trigger values, are shown in figure 7.5. As before,
the individual subwindows are centred on their respective maximum. At
the top is the temporal evolution of the flux surface averaged signal 〈φfl〉fs
and below are the potential fluctuations poloidally resolved. In contrast to
figures 7.1, figure 7.5 shows the averaged evolution of the potential fluctu-
ations. This is not the dynamic of a zonal flow in general but more the
evolution of the dominant zonal perturbation, where the individual zonal
flow event can significantly differ from the average. This can be seen with
the conditional deviation σCA [201], as a measure of the goodness of the
average, which is defined as the standard deviation σ of the difference of the
averaged signal 〈X〉CA(τ) and the single realisations [x(ti + τ)]i=1...N ,

σCA(τ) =
σ
(
[〈X〉CA(τ)− x(ti + τ)]i=1...N

)
σ(X)

. (7.1)

The values of the conditional deviation, without normalisation, are shown
in the figures (a,b) as shaded area. Around the trigger time point the values
are small whereas they are in the range of the overall standard deviation of
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(a) (b)

(c) (d)

Figure 7.5: Conditionally averaged time evolution of the potential around the
trigger time point (τ = 0μs). Figures at the top (a, b) show the flux surface
average signal and below (c, d) is the evolution on the complete flux surface. For
the pictures on the left side the signal is triggered on positive events whereas on
the right it is triggered on negative ones.
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Figure 7.6: Collisionality scaling of the standard deviation σ of the distribution
of the zonal flow amplitude. On the left hand side (a) is the scaling shown for low
magnetic field and on the right hand side (b) for high magnetic field. In general,
the variance is increasing for decreasing collisionality.

the signal in the rest of the time. This shows that the single zonal flow event
must have a quite different dynamic, however, the conditional average still
exhibits features characteristic to all realisations. In the contour plots (c,d)
the propagation of the turbulent structures in the negative θ-direction is
clearly visible. This correlation demonstrates the importance of these struc-
tures, thought of as drift waves, for the zonal flow evolution. At τ = 0 μs the
potential on the complete flux surface is positive, or negative, respectively,
which corresponds to a poloidal wavenumber of kθ = 0. The (averaged) life
time of the zonal flow, in both cases, is relatively short with Δτ ≈ 50 μs.

Key parameters like the zonal flow amplitude and the life time can now
be extracted from the flux surface averaged potential. The zonal flow amp-
litude, identified as the peak value of the single event, has a the trigger value
as minimum but follows, of course, a distribution. Figure 7.6 shows the col-
lisionality scaling of the standard deviation of the zonal flow amplitude. For
low (a) and high (b) magnetic field the distribution gets broader for lower
collisionality, which is especially clear in the second case, implying the in-
creased occurrence of strong zonal flows. This already indicates that the
zonal flow power increases with lower collisionality, meaning a more adia-
batic electron response. This will be subject of the discussion in section 7.3.2.
Noticeable are the relatively high values for deuterium in comparison with
the values for hydrogen. Although the discharges have comparable collision-
alities, the zonal flow power is, in nearly all cases, higher in deuterium. This
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Figure 7.7: Auto-correlation function (ACF) of the flux surface averaged potential
for different gases at low (a) and high (b) magnetic field. The ACF becomes broader
with increasing ion mass.

at other fusion experiments, meaning better confinement in D than in H.
Next, the scaling of the zonal flow life time is examined. To extract an

averaged value for each measurement the auto-correlation function (ACF) of
the flux surface averaged potential is calculated. Figure 7.7 shows the auto-
correlation function for all gases used at low (a) (#10377, #11195, #10306,
#10295, #10277, #10262) and high (b) (#10264, #10284, #10301, #10372)
magnetic field. A variation of the peak width with the gas species is visible,
which becomes wider for heavier ion mass.
For a quantitative analysis the auto-correlation time (ACT), i.e. the time
until the signal has dropped below the value 1/e, is calculated for each meas-
urement. The actual life time of the zonal flow would then be at least twice
the auto-correlation time. The collisionality scaling of the auto-correlation
time is plotted in figure 7.8 for low (a) and high (b) magnetic field. Al-
though the variation is close to the temporal resolution of the measurement,
an increase of the correlation time with lower collisionality is found in both
cases. For low magnetic field this increase is mainly restricted to the scaling
within a gas species. In contrast to the zonal flow amplitude (Fig. 7.6 (a)),
the deuterium measurements do not show higher values for the zonal flow
life time but are in the same range as the values for hydrogen. In summary,
a lower collisionality seems not only to lead to a higher amplitude but also
to a longer life time of the zonal flow (even though the trend, in both cases,
is relatively weak for the overall scaling at low magnetic field).
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Figure 7.8: Scaling of the auto-correlation time (ACT) for low (a) and high (b)
magnetic field with collisionality C. Especially for discharges with high magnetic
field the auto-correlation time increases strongly for lower collisionality C.

7.3 Spectral analysis

The zonal potential, available at high temporal resolution, is now analysed
for its spectral distribution. This is part of the first section 7.3.1. In the
second part (7.3.2) the collisional scaling of the zonal flow contribution to the
spectrum, relative zonal flow power, is considered, which has been published
in [202].

7.3.1 Frequency distribution

Previous investigations [101, 167] showed that the zonal potential fluctu-
ations have a frequency below 10 kHz. This is in accordance with the basic
requirements for zonal flows (cf. Sect. 3.1.1) where they are assumed to be
clearly separated from the ambient turbulence. In figure 7.9, the spectral
distribution of the zonal potential fluctuations are shown for various gases
at low (a) and high magnetic field (b). The frequency spectra are calculated
from sub-series with a window length of roughly 1ms which are averaged
1024 times or 512 times for low and high magnetic field, respectively. In
both cases the main part of the spectral power is concentrated in the low
frequency range below 8 kHz. For high magnetic field the spectra are smooth
and the absolute power of the fluctuations increases with ion mass. The trend
is similar, however, not as clear for low magnetic field. In this configuration
a second maximum is visible at higher frequencies (≈ 18 kHz) for the heavy
gases neon, argon, and krypton. This is a (relative) fast fluctuation of the
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Figure 7.9: Frequency spectrum of the flux surface average potential. The spectra
for different gases for low (a) and high (b) magnetic field are shown. The main
spectral power is concentrated below 8 kHz, which is the expected frequency range
of the zonal flow.

zonal potential which might be connected to the GAM oscillation (see 3.1.2).
However, their contribution would be rather small. This discussion is con-
tinued in chapter 9 where the different modes, interacting with the zonal
potential, are analysed.

Simulations with collisional trapped electron mode turbulence [203] sug-
gest that the frequency spectrum of the zonal potential should become wider
for a nonadiabatic electron response, i.e. high collisionality or here smaller
ion mass. This is however difficult to estimate as the variation of the spectral
width is small. Furthermore, no clear trend seems visible for the spectral
position of the maximum. Since a gas specific dependency seems to exist,
the collisional scaling is analysed additionally. For both configurations, the
maximal spectral power against the collisionality is shown in figure 7.10.
The trend is similar to the one shown in figure 7.6 due to the fact that both
are related quantities. Again, the increasing trend with decreased collision-
ality is especially clear for high magnetic field and the values for deuterium,
where the spectral zonal flow power is relatively high, stick out.

7.3.2 Collisionality scaling of spectral power

As already visible from the results so far, the collisionality has an influence
on the drift-wave zonal-flow system. Of special interest is the scaling of
the zonal flow power. An increased collisionality cumbers the electron re-
sponse (Sect. 6.2.4) which influences the driving mechanism of the zonal flow
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(b)(a)

Ne
Ar
Kr

H
D
He

Figure 7.10: Collisionality scaling of the maximal contribution to the flux surface
averaged potential spectrum. On the left hand side is the scaling with discharges
at low magnetic field (a) and on the right for high magnetic field (b). In both cases
the spectral power increases with lower collisionality C.
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Figure 7.11: The scaling of the relative zonal flow power with collisionality. For
a clearer representation, the scaling for low magnetic field is shown on the left
hand side (a) and for high magnetic field on the right hand side (b). The spectral
contribution of the zonal flow increases with lower collisionality.
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Figure 7.12: Same representation as in Fig. 7.11 with a power law fit to all data
points. The fit parameters are given in the figure.

(Sect. 3.2). Figures 7.6 and 7.8 show that the absolute amplitude and the life
time of the zonal flow increase with lower collisionality. Especially for the
low magnetic field configuration the trend is not really conclusive. However,
the accessible collisionality range covers four orders of magnitude and the
turbulent state changes strongly. As the overall turbulence depends on the
background gradients, not the absolute zonal flow power is interesting, but
the relative contribution to the turbulent spectrum. Therefore, the relative
zonal flow power is calculated as

PZF/Ptotal =
∑

f≤8 kHz

Sφ(k = 0, f) /
∑
k,f

Sφ(k, f) (7.2)

from the wavenumber frequency spectrum Sφ(k, f) of the potential (cf. Chap.
4.3.1). As indicated above, for the zonal flow component only the low fre-
quency bandpass filtered spectral power is used. For a better visualisation
figure 7.11 shows the collisionality scaling of the relative zonal flow power
for low (a) and high (b) magnetic field separately. In the adiabatic limit
(C → 0), the zonal flow contribution to the complete spectrum strongly in-
creases, and the zonal flow power reaches values of up to 29% of the total
turbulent spectral power. For high magnetic field this trend is especially
clear when the individual gas is considered. The large scatter in the case
of low magnetic field might be connected to the change in other relevant
parameters, like plasma-β (Sect. 6.2.5). Nevertheless, the overall trend of
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Chapter 7 Zonal flows

the relative zonal flow power cannot be explained by an increased plasma-β
as this should have either no impact on the zonal flow or should decrease
the relative zonal flow power as the total power enters inversely in equa-
tion (7.2). To deduce a quantitative assertion, the collisionality scaling of
the relative zonal flow power is fitted with a power law ∝ Cα, where a
value of α = −0.19± 0.02 is found when all measurements are considered
(see Fig. 7.12). For low magnetic field measurements alone the fit yields a
slightly higher value of α = −0.23± 0.02.

7.4 Summary of the chapter

The poloidal probe array enables to directly access the flux surface averaged
potential, which is though of as the zonal flow mode. Together with the
2D-movable probe unit, using the conditional averaging technique, the zonal
flow evolution was visualised in the poloidal cross section. Key parameters
were extracted from the zonal potential and scaled with the collisionality.
The analysis of the zonal potential could reveal the following points:

• The distribution of the flux surface averaged potential, as well as
the number of zonal flow events, is close to a Gaussian. And the
corresponding waiting time decreases exponentially with a maximum
at 200 μs when triggered on |2σ|. This already illustrates the dynamic
behaviour of the drift-wave zonal-flow system where the zonal flow
appears in a burst like manner.

• Positive and negative potential fluctuations, meaning opposite flow
directions, occur equally distributed. The averaged temporal evolution
of both flow patterns are very similar and correspond to a single burst,
where the potential is positive or negative on the whole flux surface. In
the poloidal cross section the zonal flow appears as a ring like structure
with a radial extent kr in the range of the dominant drift waves. The
measurements at two distant toroidal positions clearly demonstrate the
3D structure of the zonal flow.

• The frequency spectra of the zonal potential show that the major power
of the zonal flow is concentrated at frequencies below 8 kHz. A spec-
tral broadening with higher collisionality or a shift of the maximal
frequency is not observed but a collisionality dependence is indicated.
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7.4 Summary of the chapter

• The scaling of different zonal flow parameters with collisionality re-
vealed a consistent trend. With decreased collisionality the zonal flow
amplitude as well as the zonal flow life time increase. The relation-
ship gets clearer when the relative zonal flow contribution, defined as
zonal flow power compared to the complete turbulent power, is con-
sidered. Values of up to 29% are reached and a power law fit (Cα)
yields α = −0.19± 0.02.

131

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 8

Reynolds stress drive

The Reynolds stress is a key quantity in turbulence research as it captures the
interaction between the turbulent structures. In the context of the zonal flow,
a radial gradient of the flux surface averaged Reynolds stress R = 〈ṽr ṽθ〉,
as indicated by the brackets, drives the poloidal flow (cf. Chap. 3.2). How-
ever, this does not imply that the Reynolds stress and the resulting local
gradients are homogeneously distributed on a flux surface, especially since
the underlying plasma turbulence depends strongly on the poloidal angle.
With the Langmuir-probe array, the Reynolds stress can be measured po-
loidally resolved and a direct estimate of the local and flux surface aver-
aged radial Reynolds stress gradient is possible. Chapter 8.1 is dedicated
to the spatial structure of the temporal mean Reynolds stress, here referred
to as background Reynolds stress, where the dependence on the magnetic
field geometry (Sect. 8.1.1) and the connection to the velocity distribution
(Sect. 8.1.2) is studied. Subsequently (Chap. 8.2), the dynamic of the Reyn-
olds stress and, especially, the connection to the zonal flow (Sect. 8.2.2) is
shown. Results of this chapter have been published in [204].

8.1 Background Reynolds stress

From the poloidal momentum balance equation (3.17) follows that a radial
gradient in the Reynolds stress, i.e. radial transport of poloidal momentum,
drives the poloidal flow. When the ensemble average is taken over time 〈 · 〉t,
it states that a local Reynolds stress gradient drives a local (stationary) flow.
For now only this temporal mean R̄(r) = 〈R(r, t)〉t of the local Reynolds
stress at the position r,

R(r, t) = R̄(r) + R̃(r, t) , (8.1)

is considered. For a non-isotropic, non axis-symmetric velocity distribution,
reflected in a correlation of radial and poloidal velocity, the mean Reynolds
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Figure 8.1: Probability distribution functions (PDF) of the velocity compon-
ents (a) and the resulting Reynolds stress (b) (#9985). Radial ṽr (red dash-dot)
and poloidal velocity fluctuations ṽθ (blue dots) are close to a Gaussian distribu-
tion (grey long dashes), whereas the resulting local Reynolds stress R (red dash-
dot-dot) and flux surface averaged Reynolds stress 〈R〉fs (blue dashes) are strongly
non-Gaussian. Skewness S and kurtosis K are shown for each distribution.

stress value is non-zero. The influence of the magnetic field geometry on the
phase relation between the velocity components is analysed.

8.1.1 Geometry dependence

With the poloidal probe array, the velocity components are measured in the
complete edge region of the confined plasma in a helium discharge at low
magnetic field (#9985). For the angle θ ≈ 0.4π figure 8.1 shows the prob-
ability distribution functions (PDF) of the velocity components ṽr,θ, the
resulting local Reynolds stress R, and the flux surface averaged Reynolds
stress 〈R〉fs. Skewness S and kurtosis K of each distribution are given in the
respective figure. In comparison with the reference Gaussian distribution
(grey long dashed line) both radial and poloidal velocities exhibit a near
Gaussian statistics. Due to the non-linearity, the local Reynolds stress has a
very high kurtosis and is positively skewed. A positive skewness implies that
on average events with outward-going transport and positive poloidal velo-
city or inward-going negative velocity events dominate the Reynolds stress
at this position. Further, the moments of the PDF are an indication of an
intermittent or bursty momentum transport, which was found in other exper-
iments as well [205]. Also after the flux surface average 〈 · 〉fs has been taken
the Reynolds stress distribution is distinctly non-Gaussian with a skewness
of S = 0.537 and a kurtosis of K = 1.874.
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Figure 8.2: The radially resolved local Reynolds stress R̄(R−R0) (red filled dots)
as well as the floating potential profile φfl (blue open dots) are shown in (a) (#9821).
The Reynolds stress is strongest in the edge region, where the poloidal probe array
is positioned (light grey area). On the right hand side (b), the poloidal profile of
the Reynolds stress R̄(θ) on the two neighbouring flux surfaces (FS 2 and FS 3) is
presented (#9985). Non-zero values of the Reynolds stress are restricted to the low
field side (LFS) with a strong poloidal asymmetry.

As the velocity fluctuations strongly depend on the spatial position, also
the Reynolds stress is assumed to show a spatial dependence. Using the
5-pin probe, the radial potential and Reynolds stress profile is measured in
the midplane from the plasma centre (R−R0 = 4 cm) to the scrape-off layer
(Fig. 8.2 (a)). The floating potential φfl (blue open circles) has a minimum
in the edge region and is zero at the separatrix (R−R0 = 12.3 cm). A similar
structure is found for the mean Reynolds stress R̄ (red filled circles) which
is here always negative with a sharp minimum at R−R0 = 11.5 cm. It
should be stressed that the values are not calculated from the mean values
of the potentials, but rather from the temporal mean taken of the product
of the velocity fluctuations calculated according to equation (5.10). Similar
experiments in a linear plasma device (CSDX) showed that the divergence of
the radial mean Reynolds stress drives an azimuthally symmetric flow [206,
207]. However, in this experiment a poloidally symmetric Reynolds stress
profile cannot be assumed and the angular dependence is studied in the
following.

The poloidal probe array covers the extreme regions of the Reynolds stress
profile and its radial position is marked with a grey box in figure 8.2 (a).
As mentioned before, the flux surfaces at this toroidal position have sim-
ilar geometrical properties as the field lines in a tokamak (cf. Fig. 5.2). In
figure 8.2 (b) the poloidal mean Reynolds stress profile R̄(θ) for both flux
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Figure 8.3: Scaling of the mean Reynolds stress |R̄| for low (a) and high magnetic
field (b). The poloidally averaged absolute values of the Reynolds stress, measured
with the probe array, are scaled with collisionality.

surfaces is shown. The poloidal dependence is similar for both flux surfaces,
whereas differences, marked as coloured region in the figure, measure the ra-
dial Reynolds stress gradient. They indicate flow drive and are mainly found
on the low field side (LFS). A pronounced maximum is visible above the mid-
plane (θ ≈ 0.4π). In previous investigations a similar poloidal dependence
has been found for the radial cross-field transport Γ = 〈ṽrñ〉 [91, 208]. These
analyses have shown that the turbulent transport is peaked in regions where
the normal curvature κn is negative and the geodesic curvature κg is pos-
itive. This is in line with theoretical studies which predict a ballooning of
fluctuation amplitudes for κn < 0 [209, 210] and it shows an additional in-
fluence by the geodesic curvature. Since the Reynolds stress R = 〈ṽr ṽθ〉 can
be seen as radial transport of poloidal momentum and it also directly de-
pends on the underlying drift-wave turbulence, a comparable influence of the
curvature terms can be assumed. With the gyrofluid code GEMR the asym-
metric poloidal structure of the Reynolds stress and the turbulent transport
could be recovered in simulations for TJ-K parameter [211]. However, fur-
ther analysis of the simulations suggest that the magnetic shear should have
a major influence.

The experimental possibilities to systematically study the influence of the
magnetic field are however limited. A continuous variation of the magnetic
field parameters, by changing the current ratio, cannot be performed since
this would change the position of the flux surfaces. But through a mag-
netic field reversal the poloidal course is mirrored at the midplane which
does only affect the parameters with asymmetric poloidal profiles. In fig-
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ure 8.4, and similarly in figure 8.5, the poloidal dependences of normal
curvature κn and geodesic curvature κg (c,d) as well as integrated magnetic
shear Λ and local magnetic shear S (e,f) are shown for the toroidal position
of port O2 for standard (+B) and reversed magnetic field (−B). The nor-
mal curvature (blue solid line) is up-down symmetric with negative values,
i.e. ’bad’ curvature, on the outboard side, whereas the geodesic curvature
(green dashed line) changes sign at the midplane and has a sinusoidal form
with minimum and maximum at bottom and top, i.e. θ ≈ ∓π/2, respect-
ively. Both, integrated magnetic shear (red solid line) and local magnetic
shear (magenta dashed line), have a more complicated poloidal dependence
and exhibit extreme values at θ ≈ ±0.6π. With a field reversal the geodesic
curvature and the integrated magnetic shear change sign whereas normal
curvature and local magnetic shear stay the same. An influence of all mag-
netic field parameters on the Reynolds stress has to be assumed. It turns
out that the combination of normal curvature, geodesic curvature, and in-
tegrated local magnetic shear determines the growth rate of the drift-wave
instability when the full curvature vector is included in the calculations [101],

γDW ∝ −κn + κg

(
ks
kα

+ Λ

)
, (8.2)

with the radial ks and poloidal wavenumber kα in terms of field aligned co-
ordinates. Since the turbulent fluctuations enter quadratically in the Reyn-
olds stress, the poloidal variation of the growth rate might regulate the
Reynolds stress amplitude. On the other hand the turbulent structures have
a finite spatial extent which is affected by the magnetic shear (see Fig. 5.3).
The importance of each effect is difficult to estimate, however, the expected
influences are the following:

• The normal curvature κn leads to a destabilisation of density and po-
tential perturbations when it is parallel to the magnetic field gradient,
i.e. κn < 0 [212] (cf. Chap. 2.2). This results in higher fluctuation
levels on the LFS of toroidal experiments. Thus a ballooning envelope
is expected with a maximum at the outboard midplane (θ ≈ 0·π).

• In context of the growth rate the geodesic curvature κg has to be con-
sidered in combination with the integrated local magnetic shear Λ.
Without magnetic shear, positive values of the geodesic curvature
would increase the growth rate which would be in the experiment above
the midplane for +B and below for −B. The strength depends on the
ratio of radial ks to poloidal wavenumber kα.
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Chapter 8 Reynolds stress drive

• As the integrated local magnetic shear Λ enters the growth rate as a
product with the geodesic curvature, its effect does not change with
magnetic field reversal. At the toroidal measurement position it leads
to an increase of the growth rate above and below the midplane on the
outboard side. Since the drift waves are mostly field aligned, a integ-
rated local shear of neighbouring field lines would also be transferred
to the turbulent structures. In the coordinate system of the experi-
ment, a positive integrated local magnetic shear would entail positive
Reynolds stress and vice versa.

• The role of the local magnetic shear S is more complicated (cf. Eq. (5.3)).
From simulations [213] a stabilising effect for drift waves is suspected
which might decrease the growth rate and thus lower the Reynolds
stress.

In [101] also the influence of the heating position on the growth rate is
discussed, which could lead to additional asymmetries. The overall Reyn-
olds stress level, as the fluctuation amplitudes, depends on the background
plasma parameters. This can be seen with figure 8.3 which shows the ab-
solute values of the Reynolds stress |R̄| averaged poloidally. An increasing
trend, as for the fluctuation level (cf. 6.3.1), is found for lower collisionality,
at least in the low magnetic field case (a).

To reduce the poloidal variations not originating from the magnetic field
geometry, the poloidal Reynolds stress profiles R̄(θ) of several measurements
at different control parameters are averaged. Each measurement is thereby
normalised to the overall Reynolds stress level

∑ |R̄|. The poloidal depend-
ency is shown in figure 8.4 for standard magnetic field direction +B (left)
and reversed magnetic field −B (right) for helium discharges at low mag-
netic field.
The averaged Reynolds stress profile with standard field direction (a) shows
a similar dependency as the single measurement (Fig. 8.2 (b)), with only
little variation implied by the small error values (95% confidence interval).
The position of the maximum falls into the region with negative normal and
positive geodesic curvature (marked as grey region) which supports the hy-
pothesis that the curvature influenced growth rate determines the Reynolds
stress. Poloidal positions with high magnetic shear, either local or integ-
rated, are indicated as hatched area.1 Noticeable Reynolds stress values are
found for the angle θ = 0·π where the local magnetic shear is positive, but

1The inboard side is omitted due to the generally small Reynolds stress amplitudes.
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Figure 8.4: Poloidal dependence of the mean Reynolds stress R̄(θ) for low magnetic
field helium plasmas. On the left hand side (a) the configuration with standard
magnetic field direction is shown, whereas for the measurements on the right (b)
the magnetic field direction is reversed. In figure (c,d) the corresponding poloidal
trend of the curvature components can be seen, with normal curvature κn (blue solid
line) and geodesic curvature κg (green dashed line). Below (e,f) the dependency
of the integrated magnetic shear Λ (red solid line) and the local magnetic shear S
(magenta dashed line) is shown. (see text for further information)

the integrated magnetic shear is zero. However, in the other two regions,
i.e. θ ≈ ±0.6π, where the local magnetic shear is negative, only small values
are found and the Reynolds stress seems to have opposite sign. As these
positions are already on the inboard side, high Reynolds stress values are
not necessarily suspected as the normal curvature is positive and fluctuation
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Figure 8.5: Same representation as in figure 8.4 but for the case of high magnetic
field. The poloidal Reynolds stress distribution is similar, but the influence of the
magnetic shear seems to be stronger.

With a magnetic field reversal the geodesic curvature and the integrated
magnetic shear change sign. The resulting poloidal Reynolds stress profile
is shown in figure 8.4 (b). Also below the midplane (κn < 0, κg > 0) (grey
region) the Reynolds stress has now significant values, where, however, the
Reynolds stress is generally large for negative normal curvature. More no-
ticeable is the course at the positions of large magnetic shear (hatched area).
The Reynolds stress has now a sharp maximum at θ = 0·π. Also in the other
two regions the sign of the Reynolds stress seems to be switched although
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8.1 Background Reynolds stress

For high magnetic field the field configuration stays the same but the
plasma turbulence, especially the structure size (Chap. 6.2.3), changes strong-
ly. The found dependencies (Fig. 8.5) are in principle the same as in the case
of low magnetic field whereas stronger radial variations are observed. The
influence of the geodesic curvature seems to shift the Reynolds stress from
above to below the midplane when the field is reversed. But due to the
superposition of multiple effects, the data is not conclusive. However, the
effect of the magnetic shear can be identified more clearly. At the outboard
midplane (θ = 0 ·π) the local magnetic shear leads to negative Reynolds
stress for the standard field direction +B and to positive Reynolds stress
in the reversed case −B. The poloidal dependency of the Reynolds stress
seems to follow the profile of the integrated magnetic shear with the extreme
values at θ ≈ ±0.6π and opposite sign. Additionally, it might be specu-
lated that local and integrated magnetic shear interact constructively at the
top (θ ≈ +0.6π) and destructively at the bottom (θ ≈ −0.6π) due to the
different sign dependence. However, it remains complicated to distinguish
between the different influences of curvature and shear induced Reynolds
stress. Therefore, measurements at other toroidal positions would be desir-
able, but a complete separation of the different influences is not possible in
the TJ-K device.

8.1.2 Coherence of velocity components

Like in the case of turbulent particle transport Γ where a positive correlation
of radial velocity ṽr and density fluctuation ñ result in an outward cross-
field transport (see Chap. 2.2), a correlation of radial and poloidal velocity
leads to non-zero Reynolds stress. Written with the cross-power spectrum
(cf. Eq. (2.20)) this is2

R̄(θ) =
∑
f

γvr,vθ (θ, f)
√
Svr (θ, f)Svθ (θ, f) cos(αvr ,vθ (θ, f)) . (8.3)

γvr,vθ (f) is the cross-coherence between the velocity fluctuations, Svr (f)
and Svθ (f) are the respective auto-power spectra, and αvr,vθ (f) is the cross-
phase spectrum.

2In the same way, this can be formulated in wavenumber space.
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Figure 8.6: Poloidally resolved frequency spectra (a,b) and wavenumber
spectra (e,f) of the radial vr and poloidal vθ velocity component, cross-
coherence γvr,vθ (c,g) and cross-phase spectra |α|vr,vθ (d,h) for low magnetic field
with standard field direction in helium (#9985). The contribution of each scale can
be spatially (poloidally) resolved by means of a wavelet transformation. In regions
with strong mean Reynolds stress (θ ≈ 0.4π) high coherence and a phase close to
zero is found.
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8.1 Background Reynolds stress

In figure 8.6 the poloidally resolved spectra are shown in frequency (a–
d)3 and wavenumber space (e–h), calculated with a wavelet transformation
(Chap. 4.3.2). The frequency spectra of the velocity components (a,b) are
broad for the whole poloidal circumference with the typical ballooning envel-
ope. Especially above the midplane (0 < θ < π/2) strong contributions are
found for the poloidal velocity component vθ at frequencies around 10 kHz.
Also the wavenumber spectra (c,d) show a similar poloidal distribution with
the asymmetry in the poloidal velocity and significant contributions up to
the smallest scales. In the region of the pronounced poloidal Reynolds stress
maximum (θ ≈ 0.4π), high coherence levels (c) are found for frequencies
above 10 kHz, which are associated with the dominant drift wave structures.
Viewed in wavenumber space (e) the coherence is relatively high for most
wavenumbers and the poloidal dependency is not as clear as in the fre-
quency domain.4 This illustrates that for the actual mean Reynolds stress
both coherence and phase of the fluctuating velocity components have to be
considered. The phase spectrum (d) is close to zero for all frequencies at the
position of the Reynolds stress maximum (θ ≈ 0.4π) and the same can be ob-
served for the spatial scales (h). However, the main poloidal variation in the
wavenumber resolved phase spectrum (h) lies in the scales above 100m−1.

For a further investigation the relation between the velocity components
is compared at three distinct poloidal positions (Fig. 8.7). The bivariant
probability distribution function (2D-PDF) as well as the coherence and
the phase spectra are shown at the inboard side (a,d,g), the outboard side
(b,e,h), and for the maximum Reynolds stress region (c,f,i). In the 2D-
PDF the connection between the velocity components is directly visible,
where a correlation or an anticorrelation manifests itself in an anisotropic
velocity distribution. For a better comparison the 1/e level of the reference
Gauss is plotted as white circle. On the inboard side (θ ≈ −π) the velocity
distribution is isotropic, which results in a Reynolds stress value near zero.
For the midrange frequencies and nearly all wavenumbers the coherence is
significant, but the corresponding phase changes between 0.2π and 0.6π, or
0·π and π respectively, which in total leaves no strong mean contribution. The
situation changes when the positions on the outboard side are considered.

3A boxcar average with the two neighbouring points is applied in poloidal direction to
get a clearer picture.

4This is due to the nature of the wavelet transformation where the scales are blurred
and the spatial resolution is relatively poor.
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Figure 8.7: Connection between radial and poloidal velocity components for three
different poloidal locations (#9985). In the upper row (a,b,c) the bivariant prob-
ability distribution functions can be seen. The 1/e level of the reference Gaussian
is drawn as solid white line. The lower rows (d–i) show the corresponding cross-
coherence γvr,vθ as well as the absolute value of the cross-phase spectrum |α|vr,vθ
between the velocity components. At the outboard midplane the Reynolds stress
is negative, which is a consequence of the anisotropic velocity distribution (b) and
the phase shift of π between the two velocity components. At θ ≈ 0.4π a phase
shift near zero (f,i) results in a positive Reynolds stress.
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8.2 Reynolds stress dynamics

The 2D-PDFs are strongly anisotropic pointing to a high resulting mean
Reynolds stress and explain the values of skewness and kurtosis found before
(Fig. 8.1 (b) for θ ≈ 0.4π). For the angle θ ≈ 0 ·π (Fig. 8.7 (e)) the abso-
lute value of the phase is near π for frequencies with high coherence, which
constitutes the negative correlation of the velocity components. The same
is true for wavenumbers above 100m−1 where the phase shift is constantly
large. In contrast a positive Reynolds stress, as for θ ≈ 0.4π, is reflected by
zero phase shift (f). Also here high wavenumbers seem to dictate the sign
of the Reynolds stress. For the zonal flow the fluctuating Reynolds stress is
important which will be analyses for its spatial variation in the next section.

8.2 Reynolds stress dynamics

So far the temporal mean of the Reynolds stress R̄(r) was analysed in detail
as for now the fluctuating part will be considered,

R(r, t) = R̃(r, t) . (8.4)

This means that either the mean Reynolds stress is not shown (i.e. f �= 0) or
that it is explicitly subtracted for the analysis (i.e. 〈R(r, t)〉t = 0). Similar
to the previous section, the spatial Reynolds stress signal power distribution
will be shown first (Sect. 8.2.1), and then in section 8.2.2 the connection to
the zonal flow will be made. In the driving mechanism of the zonal flow the
density-potential coupling plays an important role (see Chap. 3.2) which is
analysed by means of the pseudo-Reynolds stress in section 8.2.3.

8.2.1 Higher order moments

Figure 8.8 (a) shows the poloidally resolved auto-power frequency spectrum
of the Reynolds stress SR(θ, f), which in total is proportional to the stand-
ard deviation σ ∝ ∑

f �=0 SR(θ, f). The same discharge as in the section
before is considered and also here a boxcar average with the neighbour-
ing points is applied. In comparison with the poloidal profile of the velocity
components (Fig. 8.6 (a,b)), the Reynolds stress fluctuations exhibit an even
stronger inboard-outboard asymmetry, and again the maximal amplitudes
can be found above the midplane. In addition, this asymmetry is reflected
in the frequency range that contributes most to the Reynolds stress. The
poloidal structure resembles the poloidal profile of the mean Reynolds stress
(Fig. 8.2 (b)), although it is more continuous, and even the magnetic shear
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(a) (b)

Figure 8.8: Poloidally resolved Reynolds stress spectra for a low magnetic field
(standard direction) helium discharge (#9985). Figure (a) shows the Reynolds
stress in frequency space and figure (b) in wavenumber space. The Reynolds stress
is strongest on the outboard side and asymmetric to the upper half where smaller
scales dominate.

influences seem visible. The discussion of the influence of the magnetic field
parameter is essentially the same as in chapter 8.1.1.
Using a wavelet transformation (Chap. 4.3.2) the contribution of each scale
can be spatially (poloidally) resolved. The wavenumber spectrum SR(θ, k)
(Fig. 8.8 (b)) shows that especially small scale structures dominate the Reyn-
olds stress fluctuations where the maximum is located above the midplane.
This is reminiscent of an earlier study on TJ-K [34], supported by computa-
tional results [113], where it was shown that the zonal flow is predominantly
driven by the smaller scales.

Next, the collisionality scaling of the moments of the turbulent Reynolds
stress is investigated. The dependency of the standard deviation, equivalent
to a fluctuation level, on the collisionality is shown in figure 8.9 for low and
high magnetic field. The trend resembles the one of the fluctuation level
of density and potential (Chap. 6.3.1) and is similar to the scaling of the
mean Reynolds stress R̄. Thus it appears that when the fluctuations in the
potential get more violent also the Reynolds stress (mean and fluctuations)
increases. This could also imply that the zonal flow drive increases the same
way as the Reynolds stress gradients get steeper. However, the relative zonal
flow power increases for decreasing collisionality (cf. Chap. 7.3.2).
As in the case of the flux surface averaged potential, higher order moments
can capture characteristics of the turbulent dynamics. The collisionality
scalings of skewness and kurtosis are shown in figures 8.10 (a,b) and (c,d),
respectively, for low and high magnetic field. To obtain a representative
value for each discharge the poloidal average is taken over all measurement
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Figure 8.9: Scaling of the standard deviation σ of the Reynolds stress with colli-
sionality. The average over all positions of the Reynolds stress array is calculated,
which is equivalent to the overall fluctuation level of the Reynolds stress. The
scaling for low magnetic field is shown in (a) and for high magnetic field in (b).
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Figure 8.10: Collisional scaling of higher order moments of the turbulent Reynolds
stress, i.e. skewness S (a,b) and kurtosis K (c,d), for low and high magnetic field,
respectively. The skewness is constant whereas the kurtosis increases when viewed
for a wide range of collisionality.
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Chapter 8 Reynolds stress drive

points. The skewness, where the absolute value is shown, stagnates and has
similar values for all measurements. This means that the Reynolds stress
fluctuations are balanced and neither positive nor negative fluctuations be-
come dominant with changing parameters. Compared with the distribution
of the zonal potential, this fits to the equipartition of the zonal flow events
(Chap. 7.1). The kurtosis, on the other hand, is generally high and shows
an increase with collisionality, at least for the collisionality range covered
by the low magnetic field measurements (c). As the kurtosis quantifies the
importance of the wings in comparison to the normal distribution, it is a
sign for an increased intermittency. A general intermittent behaviour is pre-
dicted for the vorticity but an increase of the intermittency level is known
from the density which gets intermittent as it becomes a passively advected
scalar [135, 214, 215]. The theoretically expected scaling for the Reynolds
stress is, however, unclear and simulations are needed to resolve the role of
collisionality for the Reynolds stress.

8.2.2 Zonal flow drive

In a next step, the connection to the zonal flow will be drawn. As done
in chapter 7, the dynamics around the zonal flow occurrence is obtained by
applying the conditional averaging technique (Chap. 4.6). The zonal po-
tential 〈φ̃〉fs, approximated as poloidally averaged signal from the floating
potential of the probes on the 3rd flux surface (FS 3), is used as trigger sig-
nal with the condition +2σ. The subwindows are centred on the respective
maximum, so that τ = 0 μs marks the position of the maximal zonal poten-
tial. In total 896 realisations are used for the ensemble average. Figure 8.11
shows the averaged dynamics in wavenumber space of the Reynolds stress
on flux surface FS 2 (a) and FS 3 (b) as well as the radial Reynolds stress
gradient (c). The Reynolds stress R̃(k, τ) on both flux surfaces fluctuates
periodically with main contributions at wavenumbers k > 70m−1, getting
more intense before the zonal potential has its maximum. The oscillation is
transferred to the Reynolds stress gradient ∂rR̃(k, τ) which is strongest at
even smaller scales.

For the same time as in figure 8.11, the Reynolds stress evolution R̃(θ, τ)
is shown in real space as coloured contour plot in figure 8.12 (a). The con-
nected local radial gradient of the Reynolds stress ∂rR̃(θ, τ) is overlaid as
contour lines, where continuous and dashed lines show negative and pos-
itive gradients, respectively. Although the fluctuations in both quantities
are small in scale, it is clear that strong contributions of turbulent Reynolds
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Figure 8.11: Temporal evolution of the Reynolds stress and Reynolds stress
gradient in wavenumber space around the zonal flow occurrence. The Reynolds
stress R̃(k, τ) on flux surface FS 2 (a) and FS 3 (b) show a primary oscillation
with main contributions at k > 70m−1. This is transferred to the Reynolds stress
gradient ∂rR̃(k, τ) (c) which is strongest at even smaller scales.
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Figure 8.12: Conditional averaged dynamics of Reynolds stress drive and zonal
flow response. For the time evolution around the trigger time point the Reynolds
stress R̃(θ, τ) (filled contour) and the local Reynolds stress gradient ∂rR̃(θ, τ) (con-
tour lines) are plotted in (a). Both Reynolds stress and Reynolds stress gradient
are strong on the outboard side. For the same timescale the radial gradient of the
flux surface averaged Reynolds stress −∂r〈ṽr ṽθ〉fs (red solid) and the acceleration
of the poloidal flow ∂t〈vθ〉fs (black dashed) are shown below (b).
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stress and its local gradient are restricted to the outboard side of the plasma.
Beyond that, the up-down asymmetry, already revealed by the spectra (cf.
Fig. 8.8), can be detected for the whole time evolution around the zonal
flow. Shortly before the trigger condition is reached (τ = 0 μs) the Reynolds
stress gradient shows contributions also on the lower side (θ ≈ −0.4π).
But for the zonal flow the flux surface averaged quantities have to be con-
sidered since they are the driving force of the poloidal flow (Eq. (3.17)).5

The zonally averaged terms of the drive equation are shown in the lower
part of figure 8.12 for the same time scale. With a red solid line the time
evolution of the Reynolds stress drive −∂r〈ṽr ṽθ〉fs is displayed, whereas the
acceleration of the poloidal flow ∂t〈vθ〉fs is drawn in dashed black. Similar
to the poloidally resolved picture, the Reynolds stress drive fluctuates fast
as compared to the poloidal flow. Shortly before the flow gets maximal
the Reynolds stress drive is strong and reaches comparable absolute values.
Both pictures together, spatially resolved and flux surface averaged, show
that the zonal flow is driven by the Reynolds stress, and this drive turns out
to be poloidally localised.

The influence of the poloidal shear flow on the ambient turbulence can be
examined on the coherence and phase spectra of radial and poloidal velocity
components where the time resolution is again obtained by a conditional
average. Also here the absolute phase is plotted since it is the determining
quantity for the Reynolds stress. Figure 8.13 (a,c) show the time evolution
of both quantities around the zonal flow occurrence. The variation in the
coherence γvr,vθ (k) is relatively small and considerable values are found for
almost all wavenumbers in the range k > 70m−1. On the other hand, the
cross-phase |αvr ,vθ |(k) shows significant variations around the zonal flow
occurrence, especially for high wavenumbers. For a better illustration of
the development of the phase relation between the velocity components,
the coherence and phase spectra at different time points from τ = −80 μs
to 0 μs are shown in (b) and (d), respectively. The data is smoothed with
the neighbouring points for a clearer illustration. As the maximum of the
zonal flow is reached (τ = 0 μs) the deviation to the temporal mean phase
(black dashed line) increases which, again, is highest for the smallest scales.
To get an impression of the evolution of the overall cross-phase, the spectral
averaged deviation of the phase is plotted in figure 8.14. The solid blue

5The damping of the zonal flow by the ion viscosity (Chap. 3.4.1), which is small
due to the high collision rates, and other damping mechanisms as, e.g. the geodesic
transfer effect (Chap. 3.4.2) [113, 216, 217]), are not further considered in the present
investigation.
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Figure 8.13: Time resolved coherence and phase spectrum of the velocity com-
ponents on FS 3. The coherence γvr,vθ (k) (a) is overall constant with only little
variation around the zonal flow maximum (τ = 0 μs). Similarly, the absolute value
of the cross-phase |αvr ,vθ |(k) (c) has major deviations from the mean mostly when
the zonal flow is strong. Regions of considerable coherence (γ ≥ 0.2) are shown
as black solid contour line. As illustration of the influence of the zonal flow on
the relation between the velocity components, the development of coherence and
phase from τ = −80μs to 0 μs is shown in (b) and (d), respectively. For a clearer
visualisation the data has been smoothed. The black dashed line marks the mean
level.
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8.2 Reynolds stress dynamics

Figure 8.14: Development of the mean absolute deviation of the cross-
phase Δ(|α|) between radial and poloidal velocity component on flux surface FS 3
around the zonal flow occurrence. At around τ = −80 μs the phase (solid blue line)
starts to deviate from the mean and gets maximal where the flux surface averaged
potential (black dashed line) has its maximum.

line shows the mean absolute deviation of the cross-phase and the black
dashed line is the flux surface averaged potential. At around τ = −80 μs
the phase starts to deviate from the mean and gets maximal at the trigger
time point. The shear flow does indeed alter the phase relation between
the velocity components where this shearing seems most effective for smaller
scales. This corresponds to the straining-out mechanism and, equivalently,
to the manifold shrinking (Chap. 3.2), where the small scale structures are
forced by the shear to couple to the zonal flow (see also Chap. 9).

In the example shown in figure 8.12 the absolute value of the Reynolds
stress drive does not exceed the actual zonal flow response. However, they
are of the same magnitude and for other measurements (Fig. 8.15) the drive is
large enough to quantitatively explain the acceleration of the flow. There are
multiple reasons why the measured drive can be lower than the acceleration.
First of all, its not the perpendicular Reynolds stress which is measured
with the array and, therefore, the Reynolds stress is lower than the real
poloidal Reynolds stress. Furthermore, the array does only cover a relatively
small area in the edge of the confined region and the radial gradient of the
flux surface averaged Reynolds stress is approximated with only two points.
Therefore, the Reynolds stress gradient could be underestimated.

153

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 8 Reynolds stress drive

Ne
Ar
Kr

H
D
He

Figure 8.15: Ratio of maximal Reynolds stress drive and zonal flow response,
−∂r〈ṽr ṽθ〉fs/∂t〈vθ〉fs, for different gases. The error bars show the range of values
and the symbol indicates the median value. Low magnetic field measurements
are shown with full symbols and open symbols stand for measurements at high
magnetic field.

8.2.3 Cross-field coupling

To get an estimate for the coupling of density and potential, the so-called
pseudo-Reynolds stress, originally introduced to get information about the
Reynolds stress from density measurements [218], is calculated. The density
is, thereby, treated analogue to the potential field. From equations (2.66)
and (5.10), then, it follows that the density-based pseudo-Reynolds stress has
to be corrected by terms of at least linear order in the collisionality O(C)
leading to the following relation between Reynolds stress Rφ and pseudo-
Reynolds stress Rn,

R = Rφ =

〈
(ñθi+1 − ñθi) (ñri+1 − ñri)

rΔθ Δr B2

〉
+O(C)

= Rn +O(C) . (8.5)

With a specific bias setting of the poloidal probe array (4th schema, see
Chap. 5.2.3) it is possible to measure Reynolds stress and pseudo-Reynolds
stress at the same time over the poloidal circumference with a reduced spatial
resolution. Probes measuring ion saturation current alternate with probes
on floating potential when going around the circumference. Since Reynolds
stress and pseudo-Reynolds stress can be measured on two flux surfaces,
the corresponding zonal flow drive −∂rR of both quantities is obtained. To
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Figure 8.16: Collisionality scaling of the correlation of Reynolds stress and pseudo-
Reynolds stress (a) and the respective flow drive (b). The correlation increases for
lower collisionality C pointing to an increased density-potential coupling in the
adiabatic regime (C � 1).
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Figure 8.17: The graphic illustrates the change of density (red, solid lines) and
potential (dashed, blue lines) coupling with collisionality C. For high collisional-
ity density and potential decouple and the tilt is not transferred to the potential
anymore.
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obtain a quantitative measure for the similarity of both quantities the cross-
correlation of the flux surface averaged Reynolds stress and pseudo-Reynolds
stress as well as the respective Reynolds stress drive is calculated from the
two time traces of 220 samples for each discharge.

The collisional scaling of the maximal correlation coefficient is shown in
figure 8.16 for the Reynolds stress (a) and the Reynolds stress drive (b).
Although the correlation values are small, they are significant and show a
clear trend. For lower collisionality the correlation between both parameters
increases, pointing to an increased coupling between density and potential.

This supports the following picture of the zonal flow drive which is illus-
trated in figure 8.17 by an eddy in a background shear flow. For an adiabatic
electron response (adiabatic regime C � 1) density and potential act sim-
ilar, as for the hydrodynamic regime (C � 1) density and potential act as
separate fluids. The spatial shapes of the density (red, solid lines) and the
potential perturbation (dashed, blue lines) are shown for low and high colli-
sionality C. A background shear flow (e.g. the zonal flow) tilts the vortex in
the density, and, through parallel coupling, also the potential is deformed. In
the limit of high collisionality the vortex tilt in the density is not transferred
to the potential anymore. In magnetised plasma the potential perturbation
leads, via E×B-drift, to vortices perpendicular to the magnetic field. A
sheared eddy in the potential has a non-isotropic velocity distribution, giv-
ing a non-zero Reynolds stress, and in turn leading to an amplification of
the initial shear flow (see Fig. 3.5). With this argumentation it is clear that
with an increased collisionality the zonal flow drive is hindered.

8.3 Summary of the chapter

The probe array was used to study the Reynolds stress distribution on the
complete poloidal circumference. With the additional radial resolution even
the Reynolds stress gradient was estimated which is the important quantity
for the zonal flow drive. Using a conditional averaging technique, the evolu-
tion of both, poloidally resolved and flux surface averaged Reynolds stress,
is analysed in a time window around a zonal flow occurrence. The results for
the background Reynolds stress (temporal mean) and its fluctuating com-
ponent can be summarised:

• The background Reynolds stress shows a ballooning shape with signi-
ficant values located where the normal magnetic curvature κn is neg-
ative (outboard side). In spite of the up-down symmetry of the flux
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surfaces the Reynolds stress maximum is shifted to the region where
the geodesic curvature κg is positive, i.e. above the midplane. Sim-
ilarly as for the turbulent cross-field transport Γ [208], this seems to
be related to the dependency of the growth rate on both components
of the magnetic field line curvature. The average tilt of the turbulent
structures is reflected in the anisotropy of the bivariant velocity dis-
tribution where especially small scale structures are decisive for the
resulting Reynolds stress orientation.

• Additionally to the magnetic curvature also the magnetic shear seems
to influence the Reynolds stress which is more pronounced for smaller
structure sizes. The integrated magnetic shear as well as the local
magnetic shear show an effect on the tilt of the turbulent structures.
In the case of the integrated magnetic shear the tilt and, therefore, the
sign of the Reynolds stress follows the direction of the shear. For the
local magnetic shear this depends on the propagation direction of the
turbulent structures.

• The Reynolds stress fluctuations show a similar poloidal dependence
as the mean Reynolds stress, suggesting an analogue influence of the
background magnetic field. The conditional averaged evolution of the
driving term and the poloidal flow illustrates the Reynolds stress drive
of the zonal flow, but this drive turns out to be poloidally localised. As
the shear flow grows, the cross-phase between the radial and poloidal
velocity component starts to deviate from the mean value where the
effect seems to be especially pronounced for small structures.

• Reynolds stress and density-based pseudo-Reynolds stress provide a
way to determine the cross-field coupling between density and poten-
tial. The collisionality scaling of the correlation of both quantities
shows that for lower collisionality both quantities are increasingly sim-
ilar. This demonstrates the transition from a typical plasma response
to a neutral fluid behaviour and implies that with decreasing collision-
ality the zonal flow drive should be more efficient.
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Chapter 9

Energy transfer in the drift-wave zonal-flow

system

The drift-wave zonal-flow interaction is governed by three-wave coupling
and, therefore, best analysed by means of bispectral analysis (Sect. 9.1).
This indicates phase coherence of the three interacting modes but it does
not show the power transfer between the different modes. To this end, in
section 9.2 the nonlinear power transfer function is shown, which gives the
direction and amount of the spectral power transfer as it includes the coup-
ling coefficients (see Chap. 4.5). The focus of this work is on the cross-field
nature of the plasma turbulence. Therefore, the transfer function considering
the cross-coupling between density and potential is calculated using fluctu-
ations of both fields (denoted with the superscript N). This corresponds to
the density fluctuation activity, whose transfer function is most sensitive to
the adiabaticity parameter [39]. For comparison, also the power transfer
of the fluid kinetic energy is calculated (denoted with the superscript V).
The collisional scaling of the energy transfer for different modes is shown in
section 9.2.2.

9.1 Nonlinear coupling with zonal flow

The degree of nonlinear three-wave coupling is measured by the bispectrum
(see Chap. 4.4). The normalised form is the bicoherence

b2(k1, k2) :=
|〈ϕ(k1, t)ϕ(k2, t)ϕ∗(k3, t)〉|2

〈|ϕ(k1, t)ϕ(k2, t)|2〉〈|ϕ∗(k3, t)|2〉 . (9.1)

With data from the poloidal probe array the bicoherence is calculated dir-
ectly in k-space, which allows for the study of the nonlinear coupling with
the zonal flow. Also, the Taylor hypothesis is not needed. A temporal av-
erage is used as ensemble average 〈 · 〉, where, when conditioned on zonal
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Chapter 9 Energy transfer in the drift-wave zonal-flow system

potential fluctuations, the dynamics around the zonal flow occurrence are
obtained (Sect. 9.1.1). The coupling strength is then scaled with collisional-
ity (Sect. 9.1.2).

9.1.1 Bicoherence during zonal flow occurrence

To obtain the bicoherence spectrum corresponding to the spectral trans-
fer of density fluctuation activity, b2nnφ, density and potential fluctuations
measured simultaneously on two neighbouring flux surfaces are used (cf.
Sect. 5.2.3). With density fluctuations from FS 2 and potential fluctuations
from FS 3, the fluctuating quantities in formula (9.1) are assigned to ϕ(k1)=
n(k1), ϕ(k2) = n(k2), and ϕ(k3) = φ(k3). For the bicoherence connected to
the fluid kinetic energy, b2φφφ, only potential fluctuations on FS 3 are used,
i.e. ϕ(k1)=φ(k1), ϕ(k2)=φ(k2), and ϕ(k3)=φ(k3). The data from a meas-
urement in helium at low magnetic field (#10003) is analysed throughout
this chapter.
In general, the presence of wave-wave interactions is a signature of turbu-
lence. As the zonal flow is an intermittent event and its duration covers only
less than 7% of the full time trace, the fraction of its three-wave coupling in
the overall spectrum is small. With the conditional average, only realisations
around the zonal flow occurrence are extracted and used for the ensemble
average.

In figure 9.1 the non-redundant part of the bicoherence spectrum is shown
as contour plot. Above is the integrated bicoherence

b2(k3) =
∑
k1,k2

k3=k1+k2

b2(k1, k2) δk1+k2,k3
, (9.2)

which represents the overall coupling with the k3 potential mode. In the left
figure (a) the axes k1 and k2 show wavenumbers of potential modes, whereas
in the right figure (b) they stand for density modes. The zonal flow coupling
is, therefore, shown on the k2=−k1 line (counter diagonal) and, in the case
of b2φφφ, additionally on the horizontal line where k2=0.
The main phase coherence in both spectra is mainly restricted to the zonal
flow coupling.1 For b2nnφ some mode coupling occurs at k2 ≈ −12m−1

1It has to be stressed that the bicoherence spectrum of the full signal is rich in mode
coupling as three-wave interaction is an important mechanism in turbulence but,
here, the data is filtered (conditional averaging) to obtain the drift-wave zonal-flow
interaction.
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Figure 9.1: Bicoherence spectrum (contour plot) and integrated bicoherence (line
plot) calculated as auto (a) and cross-spectrum (b) from density n(k1, k2) and po-
tential fluctuations φ(k3). For the ensemble average subwindows of 256 μs width
around the zonal flow occurrence are averaged over. The zonal flow is the
k3=0 component, which exhibits a broad spectrum.

with the maximum at k1 ≈ 61m−1 and k3 ≈ 49m−1. This is not directly
connected to the zero potential mode and represents the coupling of the
m=1 density mode. In toroidal configurations the GAM is a candidate for
this kind of density perturbation and the coincident appearance with the
m=0 potential mode does indeed suggest such an instability. A connection
to the GAM and the geodesic energy transfer will be further discussed in
section 9.2.1.

The bispectra show broad mode coupling along the zonal flow occurrence.
However, this includes the coupling preceding and following the zonal flow
as the ensemble average is calculated over the entire subwindows around
the trigger time points. With the conditional averaging technique it is also
possible to resolve the temporal evolution. This gives the dynamics of the
nonlinear mode coupling with respect to the trigger time point, which, as
in the analyses before, is chosen to be at the zonal potential maximum. A
2σ trigger condition is used with a subwindow size of 256 μs. The results
for b2φφφ and b2nnφ are shown in figure 9.2 on the left and right hand side,
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Figure 9.2: Time resolved nonlinear coupling around the maximum of the zonal
potential (τ = 0 μs). Data of b2φφφ is given on the left and of b2nnφ on the right.
At the top (a,b) the total bicoherence is shown, which is a measure for the overall
nonlinear coupling in the spectrum. The integrated bicoherence (c,d) and the
bicoherence of the modes which couple to the zonal flow, i.e. k1 + k2 = 0, (e,f) are
presented below. An oscillatory behaviour of the coupling strength, which built up
prior to the zonal flow occurrence, is apparent.
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9.1 Nonlinear coupling with zonal flow

total b2 =
∑
k1,k2

b2(k1, k2) , (9.3)

which is the sum over the whole spectrum and indicates general nonlinear
mode coupling in the turbulence. For a better visualisation of the zonal flow
coupling only special parts of the bispectrum are depicted. Figures (c,d)
show the evolution of the integrated bicoherence spectrum (Eq. (9.2)), where
at k3 = 0 is the coupling with the zero potential mode. Below (Fig. (e,f)),
the evolution of the bicoherence spectrum is shown for the same time range.
Here, only modes which couple to the zonal flow are chosen, i.e. which fulfil
the resonance condition k2 = −k1.2 For both bispectra, b2φφφ (a,c,e) and b2nnφ

(b,d,f), an oscillatory behaviour is found which builts up towards the trigger
time point and gets maximal just before the maximum of the zonal potential.
As the bicoherence is representative of the Reynolds stress (Chap. 3.2), this
is an additional indication of the Reynolds stress drive (Chap. 8.2.2). The
integrated bicoherence (c,d) shows that the mode coupling is concentrated
at the k=0 component. When the coupling is resolved for the different
modes which can interact with the zonal potential mode (e,f), it can be
seen that the coupling is generally broad. Prior to the zonal flow maximum
(τ ≈ −70 μs) the coupling with a m=4 mode (k1 = −k2 ≈ 53m−1) is
apparent, more prominent in b2nnφ (f), which might be identified with the
dominant drift wave structure (see Chap. 6.3.2). However, various modes
couple to the zonal flow where the contribution of the modes with mode
numbers m = 1, 4, 7, and 12 are especially strong around τ = 0 μs. The
coupling with the different modes is discussed in section 9.2.1 in more detail.
As a next step, the collisionality scaling of the coupling strength is examined.

9.1.2 Collisional scaling of coupling strength

As the bicoherence is a measure of the nonlinear mode coupling strength,
it is connected to the Reynolds stress and, therefore, to the drive of the
zonal flow. Figure 9.3 shows the scaling of the integrated bicoherence b2(k3)
of the k3=0 component, indicative of the overall zonal flow coupling. The
bispectrum is calculated as in the section before where the average includes
all time points in the subwindows around the trigger time points. Meas-
urements at low and high magnetic field are shown separately in figures (a)

2For plot 9.2 (e) the (k1 = 0, k2 = 0, k3 = 0) coupling is suppressed as it does naturally
outrange the other couplings.
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Figure 9.3: Scaling of the cross-bicoherence b2nnφ at k3=0 (zonal potential mode)
with collisionality for measurements at low (a) and high magnetic field (b). A
higher bicoherence shows increased nonlinear coupling and indicates stronger zonal
flow drive.

and (b), respectively. Especially for high magnetic field a clear increase in
coupling strength is found with lower collisionality. The trend for low mag-
netic field (Fig. (a)) is similar but not as clear, and values for deuterium
are, again, relatively high when compared to those of hydrogen. This is in-
dicative of an increased Reynolds stress drive with lower collisionality which
would explain the increase in zonal flow power for stronger adiabatic coup-
ling (cf. Sect. 7.3.2). However, the bicoherence includes all mode couplings
and does not distinguish between drive and damping. In order to obtain
only the drive of the zonal flow also the nonlinear coupling coefficients have
to be considered. Therefore, the wave kinetic equation has to be solved in
order to obtain nonlinear power transfer function, which is the topic of the
next section.

9.2 Analysis of energy transfer channels

As stated by the wave kinetic equation (4.35), the evolution of the energy
can be separated into a linear and nonlinear part,

∂

∂t
Ek3

= linear terms +
∑

k3=k1+k2

T (k3 ↔ (k1, k2)) , (9.4)
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9.2 Analysis of energy transfer channels

where the amount and direction of the spectral power transfer connected to
three-wave interactions is given by the nonlinear energy transfer function

T (k1, k2) = Re(ΛQ
k3
(k1, k2)〈ϕ(k1, t)ϕ(k2, t)ϕ∗(k3, t)〉) . (9.5)

This includes the bispectrum 〈ϕ(k1, t)ϕ(k2, t)ϕ∗(k3, t)〉 and the coupling
coefficients ΛQ

k3
(k1, k2), which can be estimated from experimental data as

described in chapter 4.5. For the present analysis of the energy transfer with
the zonal flow the modified Ritz method proposed by Kim et al. [153] is used
to obtain the energy transfer function. Again, the poloidal probe array per-
mits the calculation of equation (9.5) directly in wavenumber space with the
assignment of the fluctuating quantities stated in section 9.1.1, i.e.

TV(k1, k2) = Re(ΛQ
k (k1, k2)〈φ(k1)φ(k2)φ∗(k3)〉) , (9.6)

TN(k1, k2) = Re(ΛQ
k (k1, k2)〈n(k1)n(k2)φ∗(k3)〉) . (9.7)

Instead of the full 2D treatment of the turbulence only the 1D-part, covering
poloidal mode coupling, is used (following [219]) which is most relevant for
the zonal flow interaction. As for the bispectral analysis (cf. Sect. 9.1),
the conditional average is applied in equation (9.5) to obtain the dynamics
around the zonal flow occurrence (Sect. 9.2.1). The resulting transfer rates of
the different coupling channels are then analysed for their collisional scaling
(Sect. 9.2.2).

9.2.1 Energy transfer with the zonal flow

The Kim method also considers fourth-order moments in order to avoid a
closure approximation (see Sect. 4.5.2). In contrast to the Ritz method it is
thus more robust against the influence of noise and fluctuations not covered
by three-wave interactions.3 Involving the next higher-order moment in the
calculation of the coupling coefficients makes the method more applicable but
results in greater computational cost and induces an potential error source
since the calculation involves matrix inversions. However, this method is best
suited for the present analysis as a good k-space resolution simultaneously
for density and potential modes can be retained.4

3The Kim method in its original form separates ideal and non-ideal fluctuations to
validate the method. This distinction will not be made for the experimental data
and the whole signal is treated as ideal fluctuations, which satisfy the wave-coupling
equation (4.28).

4In case of the Camargo method [39] the turbulence has to be treated intrinsically two-

dimensional. For the free-energy-like transfer function TN the maximal resolvable
mode number would be reduced by a factor of 2 [148].
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Figure 9.4: Energy transfer function averaged around the zonal flow occurrence.
The line plot gives the energy transfer with the resonant mode k3 = k1+k2, where
positive values indicate energy gain and negative show energy loss. Various modes,
up to smallest resolvable scale, contribute to the drive of the zonal flow (k3 =0).
In figure (a) the energy transfer of the potential fluctuations and in (b) the energy
transfer of density fluctuations is shown.

Following the procedure in section 9.1, the energy transfer functions are
calculated around the zonal flow occurrence. Figure 9.4 (a) shows the
kinetic-energy-like transfer function TV and (b) the free-energy-like trans-
fer function TN. Equivalent to the integrated bicoherence, the integrated
transfer function, T (k3) =

∑
k1,k2

Tk(k1, k2) δk1+k2,k3
, is included in the fig-

ure. The interpretation of the different axes is the same as in figure 9.1,
where the zonal flow is represented as the k3=0 component. The trans-
fer function T (k1, k2) will attain positive values when mode k gains energy
((k1, k2) → k), and negative values when energy in mode k is transferred
to modes k1 and k2 ((k1, k2) ← k). Due to the chosen average, the trans-
fer rates connected with the zonal potential mode dominate the spectrum.
For the zonal flow (m=0) a positive value for the energy transfer is found,
confirming the inverse energy transfer originally published in [34] obtained
by the Camargo method [39]. Various modes, especially in the mid- and
higher wavenumber range (k1 = −k2 > 70m−1), contribute positively in the
energy transfer with the zonal flow. This points to a non-local interaction
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9.2 Analysis of energy transfer channels

with the zonal flow where smaller structures transfer their energy directly
to the zero mode. A possible energy transfer to the GAM (m=1) might be
inferred from the negative transfer rates at (k1 = −k2 = 12m−1). However,
the transfer function is calculated as an average over all time points around
the zonal flow occurrence adding up positive and negative contributions.

With the conditional averaging procedure the temporal evolution around
the zonal flow occurrence can be analysed. The representation of the dif-
ferent parts of the transfer function is the same as in figure 9.2. Similar to
the total bicoherence the total energy transfer may be defined, total T =∑

k1,k2
T (k1, k2), which is shown in figures 9.5 (a,b). Figures (c,d) show the

integrated power transfer, and in figure (e,f) the transfer rates for all modes
which couple to the zero potential mode are depicted.5

The evolution of both transfer functions, TV and TN, is similar. Prior to the
zonal flow maximum (τ = 0 μs) the overall energy transfer is positive, and
it gets negative as the zonal flow decays. The integrated bicoherence in fig-
ure (c,d) confirms that this energy transfer is mainly restricted to the zonal
flow (k3=0). Broken down into the individual mode coupling (k1=−k2 line)
reveals a complex transfer pattern along the zonal flow evolution (Figs. (e,f)).
As for the bicoherence, the oscillatory behaviour is observed (mainly in TV),
which culminates in a broad energy transfer shortly before the zonal flow
maximum. Modes up to the highest resolvable wavenumbers transfer energy
to the zonal flow, but also a contribution at k1 = −k2 = 12m−1 is visible,
which could be related to the GAM as it possesses mode number m = 1.
While the energy input from large scale structures (k1 = −k2 < 66m−1)
quickly ceases away, becoming a sink for the zonal flow energy, selected
small scale (density) structures (k1 = −k2 > 66m−1) keep on pumping en-
ergy to the zonal flow although the flow maximum is exceeded (Fig. (f)).
This corresponds to the findings in chapter 8.2.2 where, especially for small
scales, the influence on the phase is large for the full flow existence. When
the zonal flow decays distinct modes occur, which gain energy from the zonal
flow. For the density the transfer to the m=6 mode (k1 = −k2 = 79m−1)
is especially strong. This shows that, besides other damping mechanisms,
nonlinear mode coupling plays an important role for the zonal flow damping.
Naively, such a mode could be thought of as the GAM in stellarator geo-
metry. However, the geodesic transfer effect (Chap. 3.4.2) is, at first, a linear

5The current analysis does not show the transfer of kinetic and free-energy in the overall
turbulence but is restricted to the drift-wave zonal-flow interaction by applying the
conditional average. Thus, the usual direction of the energy transfer must not be
expected.
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Figure 9.5: Temporal evolution of the nonlinear energy transfer function TV (left)
and TN (right) around the zonal flow occurrence. In figure (a,b) the total energy
transfer, in (c,d) the integrated energy transfer, and in (e,f) the energy transfer with
the zonal flow is shown (cf. Fig. 9.2). The nonlinear energy transfer is important
for the zonal flow growth (τ ≤ 0) and its damping (τ > 0). Especially, the energy
transfer to the k1 = −k2 = 79m−1 density mode (m=6) is high.
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9.2 Analysis of energy transfer channels

damping mechanism, and the GAM structure in non-axial magnetic fields
is complicated as several higher Fourier components of the magnetic field
have to be considered. For the magnetic field in TJ-K the m=1 and m=6
components are indeed the dominating contributions [220].6 The results in
figure 9.5, thus, suggest a contribution to the zonal potential attribute to
the GAM, which cannot be separated from the zonal flow in the current
analysis.

Nevertheless, positive and negative energy transfer rates of the k3=0 com-
ponent can now be distinguished. This is used to analyse the collisionality
scaling of the different transfer channels as a next step.

9.2.2 Influence of collisionality

With the wavenumber resolved energy transfer function in combination with
the conditional ensemble average it is possible to examine the collisionality
scaling of energy gain and loss of the zonal flow. To obtain a representative
value for each transfer channel, the time resolved transfer function is aver-
aged over a certain time window asymmetrically positioned with respect to
the trigger time point (zonal flow maximum). As the cross-coupling between
density and potential is of interest, the free-energy-like transfer function TN

is used for the analysis.
In figure 9.6 the scaling of the transfer rates of specific modes is shown

for measurements at low (left) and high magnetic field (right) separately
as the magnitude in some instances differs significantly. For the scaling of
the energy transfer into the m=0 mode, i.e. zonal flow drive, the energy
transfer function is averaged over 128 μs prior to the zonal flow maximum.
Compared with figure 9.5 this includes most of the positive contributions
of the transfer function. Figures (a) and (b) confirm the trend observed in
the scaling of the bicoherence (Sect. 9.1.2) as for decreasing collisionality
the energy transfer to the zonal flow clearly increases. For high magnetic
field (a) the increase is especially strong and a fit with a power law Cα

yields a value of α = −0.60± 0.07. Noticeable are, again, the high values
for deuterium in comparison with hydrogen (cf. Chap. 7.3.2). Higher energy
transfer rates might explain the increased zonal flow level in deuterium but
the reason for this isotope effect remains unclear as the cross-field coupling
is not significantly higher (cf. Chap. 8.2.3). For low magnetic field the power

6For the actual GAM structure also the damping at different mode numbers has to be

considered, which increases with e−1/n2
[108].
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Figure 9.6: Collisional scaling of the nonlinear energy transfer for specific modes.
Measurements at low magnetic field are shown on the left and at high magnetic
field on the right. The energy transfer to the zonal flow is captured by the transfer
function at k3 = 0 (m = 0) averaged over 128 μs before the zonal flow maximum
(a,b). The results of a power law fit are given in the figure. For the m=1 (c,d) and
m=6 (e,f) density modes the transfer function is mostly negative when averaged
over the time after the zonal flow maximum (32 μs). Thus, these modes are loss
channels for the energy in the zonal potential mode but, in both cases, no clear
scaling with collisionality is found.
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9.3 Summary of the chapter

law fit results in α = −0.17± 0.03 when all gases are considered and α =
−0.23± 0.03 without deuterium. These are similar values as found for the
collisional scaling of the zonal flow power in chapter 7.3.2 which underlines
the close connection of both quantities.

The analysis in the previous section showed that a negative energy trans-
fer occurs as the zonal flow decays. This motivates the study of different
transfer channels which could act as loss channels for the energy in the zero
potential mode. For the GAM in the magnetic field structure of TJ-K the
m=1 component (tokamak mode) and the m=6 component (due to the
sixfold symmetry of the experiment) are expected. Therefore, the respective
energy transfer of the zero potential mode to these two components is shown
in figure 9.6 (c-f). The transfer function is averaged over 32 μs following the
maximum of the zonal potential. For the m=1 (c,d) and m=6 density
mode (e,f) mostly negative values are found for the energy transfer, which
shows that both components are loss channels for the zonal potential mode.
The collisionality scaling is, however, inconclusive. For measurements at low
magnetic field the m=1 transfer channel (Fig. 9.6 (c)) shows a tendency to
increased values with lower collisionality (higher zonal flow power). For high
magnetic field the m=6 transfer channel (Fig. 9.6 (f)) shows this trend.
As the geodesic coupling is complex in stellarators, the role of the different
modes cannot be fully resolved.

9.3 Summary of the chapter

As a modulation instability, the zonal flow is driven nonlinearly by the turbu-
lent plasma modes. The bicoherence, as a measure for the nonlinear coupling
strength, and the nonlinear energy transfer function are calculated using ex-
perimental data. Performing the calculation in k-space together with a con-
ditional average allows for the direct analysis of the zonal flow interaction.
The results can be summarised as follows:

• The bispectral analysis, indicative of three-wave interaction, reveals
that with the zonal flow occurrence the nonlinear coupling is strong,
which demonstrates the Reynolds stress drive of the zonal flow in an-
other way. The coupling is generally broad where high values of phase
coherence are found up to the smallest resolvable scale. An oscillatory
behaviour in the coupling strength is observed, but also the coupling
to the m=1 density mode is apparent which suggests the presents of
a GAM oscillation.
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Chapter 9 Energy transfer in the drift-wave zonal-flow system

• With the calculation of the energy transfer function the direction and
the amount of energy transfer is resolved. Prior to the zonal potential
maximum the energy transfer is strongly positive confirming the pic-
ture of the nonlinearly driven zonal flow. Furthermore, energy transfer
from small scale structures support the picture of a nonlocal driving
mechanism. Also for the decaying zonal flow the nonlinear energy
transfer is high, where, especially, the transfer to the m=6 density
mode is prominent. This could be connected to the GAM, which ex-
hibits the sixfold symmetry of the magnetic field.

• The collisional scaling of the bicoherence shows an increased coupling
with the zonal flow for lower collisionality, indicating increased drive.
Similarly, the energy transfer to the zonal flow increases for lower col-
lisionality, when the transfer function is averaged prior to the zonal
flow maximum. As for the relative zonal flow power, deuterium shows
higher values of the transfer rates despite of a similar collisionality as
hydrogen. The m=1 and m=6 density modes (GAM) appear as loss
channels but a clear scaling with collisionality is not observed.
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Chapter 10

Summary and conclusion

Turbulence in two dimensions tends to self-generate large-scale turbulent
structures, so-called zonal flows. These shear flows play an important role
in fusion research as they are thought to be connected to the transition to a
high confinement regime (H-mode). However, the physics of zonal flows in
plasmas, especially in complex magnetic field geometries, is not sufficiently
understood in theory and experiment. Primarily, this is due to the fact
that a realistic treatment of the magnetic field in simulations is difficult and
measurements of turbulent fluctuations are hard to obtain in fusion plasmas.
The measurements for this work have been conducted at the stellarator ex-
periment TJ-K. Although the plasma parameters are comparatively low,
it has been shown that normalised quantities are similar to those in fusion
edge plasmas. The low temperatures allow the use of Langmuir probes in
the entire confinement region. With a poloidal probe array, consisting of
128 Langmuir probes with 32 probes on each of four neighbouring magnetic
flux surfaces, density and potential fluctuations have been acquired in this
work with high spatial and temporal resolution at the same time. Thus,
velocity fluctuations as well as the turbulent Reynolds stress, and its gradi-
ent, are available on the complete poloidal circumference. This gives the
unique possibility to directly study the zonal flow and the connected turbu-
lent dynamics in a toroidally confined plasma. This work concentrates on
the investigation of the Reynolds stress drive of zonal flows with its connec-
tion to the geometry of the confining magnetic field. The special focus is on
its collisionality dependence, which determines the cross-coupling between
the density and potential fluctuations. In order to gradually change the col-
lisionality, a multitude of measurements has been performed, using the gases
H2, D2, He, Ne, Ar, and Kr at different pressure and heating power.

The main results of this work can be summarised as follows:
All measurements of this work, performed using newly designed poloidal
limiters, exhibit centrally peaked density profiles and electron temperature
profiles with a maximum in the edge of the plasma. Mainly by changing
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Chapter 10 Summary and conclusion

the ion mass, the collisionality C could be varied by about four orders of
magnitude, which makes it possible to study the transition from the hydro-
dynamic regime (C � 1) to the adiabatic regime (C � 1). As found in
simulations, the density and potential fluctuation levels are found to scale
with collisionality, pointing to a destabilisation of the drift waves through
an altered density-potential coupling. The spectra show the typical shape
of turbulence and scale with the structure size, i.e ρ0.43s .
In the wavenumber frequency spectra a kθ=0 mode in the potential is ap-
parent, while not present in the density. This is the signature of the zonal
flow, which is known to be a pure potential mode, and it also excludes the
possibility of a pure mean background fluctuation since the density is not
changed. Positive and negative zonal potential fluctuations appear equally
distributed in a burst like, intermittent manner, and the frequency spectra
show that the main spectral power is located below 8 kHz. Measurements
with the poloidal probe array in combination with the 2D-movable probe
unit clearly show the 3D structure of the zonal flow as a homogeneous po-
tential perturbation on the whole flux surface narrow in its radial extent.
With kr ≈ 50m−1 the radial wavenumber is in the range of the dominant
drift wave structures.
The tilt of vortices in a shear flow is the fundamental principle of the Reyn-
olds stress drive of zonal flows. It is found that the time-averaged (mean)
Reynolds stress is not homogeneously distributed along the flux surface but
has a strong poloidal asymmetry where it is concentrated in regions with
negative normal magnetic curvature κn and positive geodesic curvature κg.
This is similar to the distribution of the turbulent cross-field transport, which
is plausible by reason of similar conceptual form of both quantities. Also,
integrated magnetic shear as well as local magnetic shear have an influence
on the tilt of the turbulent structures even though mostly overlaid by the
curvature effects. Asymmetries in the Reynolds stress profile have been con-
firmed by simulations, which substantiates the nonlocality of the background
shear flow formation.
Using a conditional averaging technique, the evolution in a time window
around the zonal flow occurrence was analysed. A direct comparison of the
driving term and the poloidal flow illustrates the Reynolds stress drive of
the zonal flow, with a spatial structure similar to that of the mean Reynolds
stress, suggesting an analogue influence of the background magnetic field.
Also in higher-order spectra the drift-wave zonal-flow interaction is appar-
ent. The nonlinear coupling, measured by the bicoherence, is strong around
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supports the picture of a nonlocal driving mechanism (k-space).
With the possibility of Reynolds stress measurements in real space, it was
found that for increasing collisionality the coupling between density and po-
tential decreases, which in return makes the zonal flow driving mechanism
less effective. As a result, also the nonlinear energy transfer into the zonal
flow, as well as the relative spectral power of the zonal flow, decreases with
higher collisionality. A power law fit Cα yields a value of α = −0.19± 0.02
for the zonal flow power where values of up to 29% of the total turbulent
spectral power are reached. This is a direct test of a fundamental mechanism
in plasma turbulence on a microscopic level of the fluctuations and represents
a first verification of the importance of collisionality for large-scale structure
formation in magnetically confined toroidal plasmas. In the scaling analyses,
an isotope effect is observed for deuterium where the zonal flow power and
the energy transfer rates are higher as compared to hydrogen although the
discharges have comparable collisionalities. The cause for this increase could
not be identified in the present experiments.
An additional peak in the frequency spectra of the zonal potential at higher
frequencies suggests the presents of a geodesic acoustic mode (GAM). The
analysis of the bicoherence spectrum and the energy transfer function, where
an interaction with the m=1 and m=6 modes appears, supports this con-
clusion. However, the density structure of the GAM in non-axial magnetic
fields is complicated and, with the present analysis methods, difficult to
separate from the low frequency zonal flow fluctuation.

Outlook

Some aspects of zonal flows could be analysed in this work but many ques-
tions have to be left unanswered. The turbulence in the adiabatic regime
(low collisionality) exhibits a strong zonal potential contribution with an
additional fluctuation at higher frequencies. It has to be clarified if this
high frequency component of the zonal potential is indeed a GAM oscilla-
tion. On the one hand this requires the calculation of the expected density
structure in the magnetic field geometry of the experiment and on the other
hand a scaling analysis of the natural frequency with the sound speed. The
zonal flow can couple to the GAM, and the presence of both modes could
result in interesting three species dynamics. Both modes would have to be
separated which might be accomplished by using data mining algorithms,
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Chapter 10 Summary and conclusion

viz. clustering analyses, on the zonal potential.1 This can also be used to
detect different scenarios of the zonal flow dynamics and, thus, to improve
the conditional averaging technique.
In here, the zonal flow has been analysed in the poloidal cross section but
the flow is inherently three-dimensional. With the combination of the pol-
oidal probe array and the 2D-movable probe, e.g. with Mach probes, also
the parallel flow can be studied. This could show the m=1 asymmetry of
the flow, originating from toroidicity, and possible higher modes which would
give a hint on the actual GAM structure. With regard to the Reynolds stress
drive of zonal flows, the role of the parallel component of the Reynolds stress
tensor can be analysed.
Concerning the magnetic field dependence of the Reynolds stress, the influ-
ence of the different field parameters has to be unravelled. This is a com-
plicated task as the influences cannot completely be separated, and further
analyses require expensive measurements at different toroidal positions. As
all other investigations, such studies should be accompanied by simulation
which would help with the interpretation of the data.
The measurements with deuterium show an effect of the isotope mass on the
zonal flow activity. Further measurements, also at high magnetic field, are
needed to verify this trend and to resolve the cause of this isotope effect.
Background shear flows are linked to turbulent shear flows, like the zonal
flow or GAM, via manifold shrinking, which reduces the turbulent mode
coupling to the zonal flow interaction. Using plasma biasing, shear flows can
be effectively induced in the experiment. The linkage between background
and turbulent flow is an interesting phenomena, and, due to the flow en-
hancement, it might give the possibility to access further dynamical states
of the turbulent system.

1Since the number of clusters is not known in advance, density-based hierarchical clus-
tering algorithms seem practicable (see OPTICS algorithm [221, 222]).
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