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Abstract
This thesis focuses on time series data. Its contribution is the development of newmethods for time
series analysis. In the first part we mainly consider univariate time series. Then, the second-order
dependence structure of purely nondeterministic stationary process is described by the coefficients
of the well-known Wold representation. These coefficients can be obtained by factorizing the spec-
tral density of the process. This relation together with some spectral density estimator is used in
order to obtain consistent estimators of these coefficients. A spectral-density-driven bootstrap for
time series is then developed which uses the entire sequence of estimated moving average coef-
ficients together with appropriately generated pseudo innovations in order to obtain a bootstrap
pseudo time series. It is shown that if the underlying process is linear and if the pseudo innova-
tions are generated by means of an i.i.d. wild bootstrap which mimics, to the necessary extent, the
moment structure of the true innovations, this bootstrap proposal asymptotically works for a wide
range of statistics. The relations of the proposed bootstrap procedure to some other bootstrap pro-
cedures, including the autoregressive-sieve bootstrap, are discussed. It is shown that the latter is a
special case of the spectral-density-driven bootstrap, if a parametric autoregressive spectral density
estimator is used. Simulations investigate the performance of the new bootstrap procedure in finite
sample situations. Furthermore, a real-life data example is presented.
In the second part we consider multivariate time series on dynamic networks with a fixed number
of vertices. Each component of the time series is assigned to a vertex of the underlying network.
The dependency of the various components of the time series is modeled dynamically by means of
the edges of the underlying network. We make use of a multivariate doubly stochastic time series
framework, that is we assume linear processes for which the coefficient matrices are stochastic pro-
cesses themselves. We explicitly allow for dependence in the dynamics of the coefficient matrices,
including of course an i.i.d. structure as is typically assumed in random coefficients models. In this
work asymptotic normality of simple statistics like the sample mean is investigated. Furthermore,
autoregressive moving average models are defined in this framework. Different parameterizations
of autoregressive models are considered. Some are more flexible, whereas others have only few pa-
rameters and are able to handle high-dimensional cases. Estimators of the parameters are discussed
for various parameterizations of such network autoregressive models and how this can be used for
forecast in this purposes. Interesting features of these processes are shown in simulations and the
finite sample behavior of the forecast procedure is investigated.
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Zusammenfassung
Zeitreihen und die Entwicklung neuer Methoden zur Zeitreihenanalyse stehen im Fokus dieser
Arbeit. Der erste Teil konzentriert sich auf univariate Zeitreihen. Für diese gilt, dass die zweite
Momentstruktur eines rein nichtdeterministischen Prozesses durch die Koeffizienten der Wold-
Darstellung gegeben ist. Diese Koeffizienten lassen sich durch eine Faktorisierung der Spektral-
dichte erhalten. Dieser Zusammenhang zusammen mit einem Spektraldichteschätzer ermöglicht
eine konsistente Schätzung der Wold-Koeffizienten. Auf Grundlage der geschätzten Wold-Koef-
fizienten kann ein Bootstrapverfahren entwickelt werden, welches allein durch den zugrunde lie-
genden Spektraldichteschätzer gesteuert werden kann, aber dennoch Pseudobeobachtungen im
Zeitbereich erzeugt. Es wird im Folgenden als SDDB bezeichnet. Hierfür werden Pseudoinnovatio-
nen benötigt, welche sich durch einen u.i.v. Wildbootstrapansatz generieren lassen. Es wird gezeigt,
dass, wenn der zugrunde liegende Prozess linear ist und die Pseudoinnovationen so erzeugt sind,
dass sie die Momentenstruktur der wahren Innovationen ausreichend approximieren, das SDDB
für eine Vielzahl an Statistiken konsistent ist. Weiter wird der Zusammenhang zu anderen Boot-
strapverfahren erläutert und unter anderemwird gezeigt, dass das Autoregressivesievebootstrap ein
Spezialfall des SDDB bei Verwendung eines parametrischen autoregressiven Spetrakldichteschät-
zers ist. Weiter wird in Simulationen die Leistungsfähigkeit des SDDB im endlichen Stichproben-
fall untersucht. Außerdem wird die Anwendung des SDDB auf einen Realdatensatzes gezeigt.
Im zweiten Teil dieser Arbeit stehen multivariate Zeitreihen im Vordergrund, bzw. genauer, mul-
tivariate Zeitreihen auf dynamischen Netzwerken mit einer festen Anzahl an Knoten. Das heißt,
dass jede Komponente der Zeitreihe einem Knoten des zugrundeliegenden Netzwerks zugeordnet
werden kann. Die Abhängigkeitsstruktur der Komponenten der Zeitreihe wird hierbei durch Ver-
änderungen in den Kanten dynamisch beeinflusst. Zur Modellierung solch eines Prozesses wird
ein multivariater zweifachstochastischer Zeitreihenansatz verwendet. Dies bedeutet, dass für einen
linearen Prozess die Koeffizientenmatrizen selbst stochastische Prozesse sind. Hierbei wird aus-
drücklich auch Abhängigkeit für das zugrundeliegende Netzwerk zugelassen. Für ein u.i.v. Netz-
werk ergibt sich der Spezialfall eines multivariaten Random Coefficient Models. Für autoregressi-
ve Zeitreihenmodelle auf Netzwerken werden für unterschiedliche Parametrisierungen konsistente
Schätzmethoden präsentiert. Diese Schätzer können zur Vorhersage von solchen Zeitreihen genutzt
werden. Die Leistungsfähigkeit dieser Vorhersagemethoden wird in Simulationen untersucht und
die Anwendbarkeit auf einen Realdatensatz dargelegt.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Acknowledgment
First and foremost, I would like to express my deep gratitude to my thesis adviser Jens-Peter Kreiß
for the true research spirit that he showed to me, his clear guidance, his patience as well as the
freedom he gave me during the research process of my current studies. In addition, my extended
appreciation goes towards his unwavering support. He always took the time to listen to my wishes
and problems.

A special thanks goes to my co-advisor Efstathios Paparoditis whose constant encouragement and
guidance helped me in the completion of this dissertation. He was always there to meet, talk about
ideas and ask me critical questions to help me clearly think through my problems. Furthermore, I
like to thank him for his generous hospitality during my stays in Cyprus.

My friend and co-worker Alexander Braumann deserves my profound gratitude for the many fruit-
ful discussions and constant encouragement.

Furthermore, I am also grateful to all current and former members of the Institute for Mathemati-
cal Stochastics in Braunschweig for the remarkably pleasant working atmosphere in our offices as
well as for the pleasant time we spent together during after-work hours.

I also thank Rudolf Suppes for his wide consultations about the English language. His friendship,
knowledge, and hospitality have enlightened me in myriad ways.

I would like to express my heartfelt thanks to my invaluable, generous and loving friends. Espe-
cially, I like to thank my friends in Wolverines for not letting me forget my roots.

A special thanks goes to my brother David. His encouragement, advice and attention have been
invaluable throughout my entire life.

I would like to express my sincere thanks to my family for providing great support and constant
encouragement. Most of all, I like to thank my parents for raising me with the spirit to always
pursue my interests and for blindly trusting in my ways.
Thank you!

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Contents
Abstract I

Zusammenfassung III

Acknowledgment V

1 Introduction 1
1.1 Time Series Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Bootstrap Methods for Time Series . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Network Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Spectral-Density-Driven Bootstrap 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Estimated Wold Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Moving Average and Autoregressive Representation . . . . . . . . . . . . . . . 16
2.2.2 Estimating the Coefficients of the Wold Representation . . . . . . . . . . . . . 18
2.2.3 Spectral Density Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Spectral-Density-Driven Bootrstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 The Spectral-Density-Driven Bootrstrap Procedure . . . . . . . . . . . . . . . 23
2.3.2 Comparison with other Linear Bootstrap Procedures . . . . . . . . . . . . . . 25
2.3.3 Bootstrap Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 A Real-Life Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Estimation of a Moving Average Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.8 Comparison with the Linear Process Bootstrap . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Additional Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9.1 Sample Size n = 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



VIII Contents

2.9.2 Sample Size n = 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.10 Additional proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Time Series Modeling on Dynamic Networks 63
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Time Series Modeling on Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Statistical Results for Doubly Stochastic Network Processes . . . . . . . . . . . . . . . 71
3.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5 Real Data Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Figures
2.1 Different spectral density estimates for the Lake Huron data . . . . . . . . . . . . . . 33

3.1 Autocovariance function (3.2.4) of process (3.2.5) . . . . . . . . . . . . . . . . . . . . . 69
3.2 sampe ACF and realization of process (3.2.5) . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3 One-step-forecasting error for X̂501 of process (3.4.2) . . . . . . . . . . . . . . . . . . . 85
3.4 Realization of process (3.4.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.5 One-step-forecasting error for X̂501 of process (3.4.3) . . . . . . . . . . . . . . . . . . . 88
3.6 Realization of the network of the example given by (3.4.3) . . . . . . . . . . . . . . . . 88
3.7 Out-degree-distributions of the slow-varying and fast-varying STERGMs with d =

1000 and density 0.005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.8 Doppelkopf data in network and time series representation . . . . . . . . . . . . . . . 92

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



List of Tables
2.1 Coverage probabilities (in percent) for the mean using the studentized statistic of

X̄n(2π f̂n)−1/2 and for a sample size n = 128 . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Coverage probabilities (in percent) for the lag 2 autocorrelation using the studentized

empirical autocorrelation at lag 2 and for a sample size n = 128 . . . . . . . . . . . . 32
2.3 The moving average (ck,n) and autoregressive (bk,n) coefficients , k = 2, . . . , 11 for the

different spectral density estimates shown in Figure 2.1 . . . . . . . . . . . . . . . . . 33
2.4 Comparison of autocovariancematrix factorization ((φ̂k,n,m)) and spectral density fac-
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1 Introduction
It has been proclaimed that ’data are the resource of the 21st century’ 1. Looking back in history,
most people can agree on that oil was the most important natural resource in the 20th century.
However, if we take a closer look at oil, we see that it is not very useful on its own. Surely, oil is
flammable, but things like cars, planes, or chemical industry plants are needed tomake oil the useful
resource we know and therefore, tomake it an important resource. Hence, tools and equipments are
needed to create a benefit using the natural resource. The same situation applies to data. Without
adequate tools data is nothing more than ones and zeroes. However, with the right methods data
can be analyzed to extract useful information to gain new insights. Like diesel needs a different
consumption engine than gasoline some type of data requires different methods than other types.
This work focuses on time series data. In almost all everyday life situations time series data can
occur. For instance, sensors monitoring the weather and collecting the air and ground temperature
or the amount of rainfall, sensors monitoring vital parameters like the heart rate of a person, or
smartphones counting a person’s steps, all results in time series data. Time series data is also given
by financial markets, e.g. stock market prices, or by social-economical data, e.g. unemployment
rates or gross national products.

An important characteristic of time series data is that different data points are usually not inde-
pendent from each other. That is why such a type of data requires special treatment. An example
for this situation is the bootstrap method, see section 1.2 for an introduction. If this method is
applied in the same manner as it is applied for data which consists of independent data points, the
bootstrap method would give in general not the answer it should. Or one may even say, it could
give a wrong answer. This problem is tackled in chapter 2.

An important question in the time series setting is the question of forecast; given data up to today
what can be predicted for the future. For a specific class of time series chapter 3 gives insights how
a good prediction can be achieved.

1.1 Time Series Fundamentals
A stochastic process is a family of random variables {Xt, t ∈ T}, where T is some index set, defined
on a probability space (Ω,F , P), c.f. (Brockwell and Davis, 1991, Chapter 1). In time series analysis

1Angela Merkel (Chancellor of Germany), Hanover, 2016: http://www.cebit.de/de/news-trends/news/

bundeskanzlerin-merkel-daten-sind-die-rohstoffe-des-21-jahrhunderts-1190
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2

the index set is usually given by Z, hence {Xt, t ∈ Z}. We distinguish here between univariate
time series, where the stochastic process is C-valued, and multivariate time series, where a vector-
valued process is considered, Cd, d ≥ 1. chapter 2 deals mainly with univariate time series, whereas
multivariate time series are in focus of chapter 3. Throughout this workwe concentrate on stationary
time series. A time series X = {Xt, t ∈ Z} is said to be stationary if E|X2

t | < ∞, EXt = μ for all
t ∈ Z, and for all t, h ∈ Z we have

Cov(Xt+h, Xt) = E[(Xt+h − EXt+h)(Xt − E(Xt))
�] = E[(Xh − EXh)(X0 − E(X0))

�] =: γ(h).

(1.1.1)

The function γ(h), h ∈ Z, defined by (1.1.1) is called the autocovariance function of time series X.
Furthermore, a time series {Xt, t ∈ Z} is said to be strictly stationary if PXt1 ,...,Xtk = PXt1+h,...,Xtk+h

for all t1, . . . , tk ∈ Z and h ∈ Z, where PXt1 ,...,Xtk denotes the joint distribution of Xt1 , . . . , Xtk .

A simple example for a stationary time series is white noise. It is given by an uncorrelated time
series {εt, t ∈ Z} with Eεt = 0 and Varεt = Σ2

ε < ∞ for all t ∈ Z. Furthermore, we introduce here
two important time series models: moving average (MA) models and autoregressive (AR) models.
Based on some white noise {εt, t ∈ Z} a moving average process {Xt, t ∈ Z} of order q is defined
by

Xt =
q

∑
j=0

Bjεt−j, t ∈ Z, (1.1.2)

where B0, . . . , Bq ∈ Cd×d, B0 is usually normalized to the identity matrix and Bq �= 0. An autore-
gressive process {Xt, t ∈ Z} of order p is defined by

Xt =
p

∑
j=1

AjXt−j + εt, t ∈ Z, (1.1.3)

where A1, . . . , Ap ∈ Cd×d and Ap �= 0. Both models are special cases of autoregressive moving
average (ARMA) models of order (p, q) which are given by

Xt −
p

∑
j=1

AjXt−j =
q

∑
j=1

Bjεt−j + εt, t ∈ Z, (1.1.4)

where A1, . . . , Ap, B1, . . . , Bq ∈ Cd×d and Ap, Bq �= 0.

A stationary time series and its properties can be expressed either in the time domain or in the
frequency domain. The frequency domain is only used in chapter 2, hence in the univariate case.
In order to simplify notation it is described here for the univariate case. However, the results given
here can be transfered to the multivariate case. The autocovariance function describes the second-

1 Introduction
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3

order properties of a time series in time domain. Herglotz’s Theorem, c.f. (Brockwell and Davis,
1991, Theorem 4.3.1) gives the corresponding representation in the frequency domain: A function
γ : Z → C is non-negative definite (hence, an autocovariance function) if and only if

γ(h) =
∫
(−π,π]

exp(ihν)dF(ν), for all h ∈ Z,

where F(·) is a right-continuous, non-decreasing, bounded function on [−π, π] and F(−π) = 0.
The function F is called the spectral distribution function of γ and if F(λ) =

∫ λ
−π f (ν)dν,−π ≤

λ ≤ π, then f is called a spectral density of γ. Furthermore, we have, c.f. (Brockwell and Davis, 1991,
Theorem 4.3.2), that if ∑h∈Z |γ(h)| < ∞ then

γ(h) =
∫ π

−π
exp(ihν) f (ν)dν, h ∈ Z,

where
f (λ) =

1
2π ∑

h∈Z
exp(−ihλ)γ(h).

Throughout this work, we denote by second-order properties of a time series the properties de-
fined by the entire autocovariance function in time domain or by the spectral density in frequency
domain, respectively.

For a stationary ARMA model given by (1.1.4), the spectral density can be directly derived by
using the corresponding AR and MA polynomials. The following theorem, c.f. (Brockwell and
Davis, 1991, Theorem 4.4.2), gives insight: Let X = {Xt, t ∈ Z} be an ARMA(p, q) process satisfying
A(L)Xt = B(L)εt, {εt, t ∈ Z} is some white noise with variance σ2, L is the lag-operator, and
A(z) = 1 − ∑

p
j=1 ajzj, B(z) = 1 + ∑

q
j=1 bj. If the polynomials A(z) and B(z) have no common

zeroes and A(z) �= 0 for |z| = 1, then X has spectral density

f (λ) =
σ2

2π

A (exp(−iλ))
B (exp(−iλ))

,−π ≤ λ ≤ π.

Besides the autocovariance, the time series itself can be expressed in frequency domain by using
an orthogonal increment process. Since it is not used in this work, we are not going into detail
here. It is more important that both domains contain the same amount of information. The only
difference is the way this information is given. This different point of view can be enlightening for
some applications, see section 1.5 in Brillinger (2001) for applications of the frequency domain. The
autocovariance as well as the spectral density can be estimated with some observations X1, . . . , Xn.
An estimator for the autocovariance is the sample autocovariance given by

γ̂n(h) =
1
n

n−h

∑
t=1

(
Xt+h − 1

n

n

∑
s=1

Xs

)(
Xt − 1

n

n

∑
s=1

Xs

)
, 0 ≤ h ≤ n − 1, (1.1.5)

1.1 Time Series Fundamentals
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γ̂n(h) = 0, h ≥ n, γ̂n(h) = γ̂n(−h). The corresponding spectral density is given by

In(λ) =
1

2π ∑
h∈Z

γ̂n(h) exp(−ihλ) =
1

2πn

∣∣∣∣∣ n

∑
t=1

(
Xt − 1

n

n

∑
s=1

Xs

)
exp(−itλ)

∣∣∣∣∣
2

,−π ≤ λ ≤ π,

and In is called the Peridogram. Point-wise consistency of γ̂n, hence, for a given h, can be es-
tablished, c.f. (Brockwell and Davis, 1991, Section 7.2). However, the periodogram In is incon-
sistent, c.f. (Kreiss and Neuhaus, 2006, Satz 12.7), which also implies that the absolute error for
all sample autocovariance do not vanish, hence ∑∞

h=0 |γ(h) − γ̂n(h)| �= oP(1). This also implies
that Σ̂n = [γ̂n(i − j)]i,j=1,...,n is not a consistent estimator of the autocovariance matrix Σn =

[γ(i − j)]i,j=1,...,n, c.f. McMurry and Politis (2010). Additional smoothing is required to get con-
sistent estimators of the second-order properties. This can be achieved by using a truncated au-
tocovariance estimator such as γ̃n(h) = k(h/M(n))γ̂n(h), where k is some kernel with support
[−1, 1] and M(n) < n such that γ̃n(h) = 0 for h > M(n). The resulting spectral density estimators
f̂ (λ) = 1/(2π)∑h∈Z γ̃n(h) exp(−ihλ) are denoted as lag-window estimators and give consistent
results, see Jentsch and Subba Rao (2015) as well as section 2.2.3 for details. Since the spectral density
and the autocovariance describe the same information, only in different domains, such a trunca-
tion leads also to consistent estimators Σ̃n = [γ̃n(i − j)]i,j=1,...,n for the autocovariance matrix Σn,
see Wu and Pourahmadi (2009) and McMurry and Politis (2010) for details. The spectral density
plays a major role in chapter 2.

1.2 Overview of Bootstrap Methods for Time Series
In statistics when a certain quantity is estimated with a given statistic often the questions occurs
how precise the estimation is and what deviation can be expected in x out of 100 cases. To answer
such questions it is helpful to derive the distribution of the statistic. However, it is usually the case
that it is not possible to derive the exact distribution. Instead, a consistent approximation is used.
Bootstrap methods can be used to estimate the distribution of a given statistic. In its basic form
the bootstrap method was introduced by Efron (1979). For a given statistic T the idea is as follows;
Based on a sample X = (X1, . . . , Xn) new samples (X∗,j

1 , . . . , X∗,j
n ), j = 1, . . . , N are created by using

the empirical distribution function given by the sample X. Then the statistic is evaluated for each
new sample, hence, we obtain T∗

1 = T(X∗,1
1 , . . . , X∗,1

n ), . . . , T∗
N . The empirical distribution function

of T∗
1 , . . . , T∗

N is then used as an approximation of the distribution function of T. N is the number
of bootstrap samples and is similar to the number of trials in a Monte Carlo simulation. However,
nothing is said about the performance of this approximation. We say that a bootstrap method is
valid if cn(Tn − ETn) and cn(T∗

n − E∗T∗
n ) have the same limiting distribution, where cn is such that

cn(Tn − ETn) converges to a non-degenerate distribution. Or more precisely, (Kreiss and Paparodi-

1 Introduction
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tis, 2017, Definition 1.41), let (Ωn,An, Pn), n ∈ N, be a sequence of statistical experiments and Ln a
sequence of random variables on Ωn. Given xn ∈ Ωn, let (Ω∗

n,A∗
n, P∗

n ), n ∈ N, be a corresponding
bootstrap statistical experiment and L∗

n bootstrap random variables. Denote by Ln the distribu-
tion of Ln and by L∗

n(xn) the distribution of L∗
n given xn. We denote the bootstrap proposal L∗

n as
valid ( or consistent, respectively) for Ln if and only if limn→∞ d(Ln,L∗

n(xn)) = 0, in Pn-probability,
where d is some distance measure between distributions. For features in probability see section
1.3.1 and especially Definition 1.7 in Kreiss and Paparoditis (2017). Possible distance measures are
the Kolmogorov’s distance, c.f. section 1.4.2 in Kreiss and Paparoditis (2017), and the Mallow’s dis-
tance, c.f. section 1.4.3 in Kreiss and Paparoditis (2017). In this work the Mallow’s distance is mainly
considered. If the data consists of independent and identically distributed data points the boot-
strap proposal of Efron (1979) is valid for most statistics and settings. However, time series data is
considered here, hence the data points are dependent. In this case, the classical bootstrap proposal
is not even valid for the sample mean 1/n ∑n

t=1 Xt. That is why several new bootstrap ideas have
been proposed to overcome this shortcoming of the classical bootstrap proposal. These ideas can
be grouped and in the following only the basic concepts of the three most important groups are
presented. The review paper by Kreiss and Paparoditis (2011) is recommended for a more exhaus-
tive overview of the several bootstrap ideas. Further details can be found in Kreiss and Paparoditis
(2017) and Lahiri (2003).

An intuitive extension of the classical proposal is the block bootstrap. In the classical proposal
new samples are generated by drawing with replacement from the original sample. However, this
destroys the dependent structure. In order to retain the dependent structure, the idea is to generate
new samples by drawing with replacement from blocks of data points. Hence, within such a block
a fraction of the dependence structure of the data is kept. In order to fully capture the dependence
structure of the underlying process it is necessary that the block length increases to infinity as the
sample size increases to infinity. For a valid approximation it is also necessary that the number of
blocks increases as well. Many authors have adapted this idea. Some work with non-overlapping
blocks has been done by Carlstein (1986) or Hall (1985), with overlapping blocks by Künsch (1989)
or even overlapping blocks with random block length by Politis and Romano (1994). Furthermore,
it is possible to taper the block-ends to get a smoother transition between blocks, c.f. Paparoditis
and Politis (2001). The block bootstrap idea does not require that the underlying process follows
some parametric structure. However, all block bootstrap variations have in common that they are
in general very sensitive regarding the choice of the block length.

The setting of the residual bootstrap is that the underlying process X = {Xt, t ∈ Z} possesses
some structure which can be expressed by Xt = f (εt, . . . ), where f is some unknown function
and {εt, t ∈ Z} is a process which is less dependent than X. The ε’s are denoted as the residuals.

1.2 Overview of Bootstrap Methods for Time Series
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The residuals are often uncorrelated, in some cases they are even independent. Based on a sample
X1, . . . , Xn the idea of the residual bootstrap is to estimate f and the residuals. Afterwards the
classical bootstrap approach on the residuals is being used. Hence, a new bootstrap observation
of Xt is given by X∗

t = f̂ (ε∗t , . . . ), where (ε∗t ) is sampled by the empirical distribution function
given by ε̂t, t = 1, . . . , n. A classical example here is the case when Xt is an AR(p) process. Hence,
Xt = ∑

p
j=1 ajXt−j + εt.However, this bootstrap idea is not restricted to finite models. The AR-sieve

bootstrap has the idea of approximating the dependence structure with AR-models of increasing
order, see Kreiss (1992), Bühlmann (1997), Paparoditis and Streitberg (1991), and Kreiss et al. (2011).
The linear process bootstrap by McMurry and Politis (2010) is another bootstrap proposal which
does not require a specific finite model. This method is described in more detail in section 2.8.

A special form of the residual bootstrap is the frequency domain bootstrap, c.f. Franke andHardle
(1992), Hurvich and Zeger (1987) or Dahlhaus et al. (1996). For a time series Xt = ∑j∈Z φjεt−j, t ∈
Z, such bootstrap methods use the following approximation of the periodogram for linear pro-
cesses at Fourier frequencies λj, In(λj) ≈ f (λj)In,ε(λj), where f is the spectral density of X and
In,ε = (2πn)−1|∑n

t=1 εt exp(itλj)|2 is the periodogram of the residuals εt. Furthermore, we have
under some conditions that the periodogram is asymptotically independent for different Fourier
frequencies, c.f. (Brillinger, 2001, Theorem 5.2.6) or (Brockwell and Davis, 1991, Theorem 10.3.2).
Hence, given some spectral density estimator f̂n residuals ε̃k can be obtained by ε̃k = In(λk)/ f̂n(λk).
After normalization, those residuals can be resampled i.i.d. to obtain bootstrap values for the pe-
riodogram. Statistics as the sample autocovariance, sample autocorrelation, or spectral density es-
timators can be expressed by the integrated periodogram given by

∫ 2π
0 W(λ)In(λ)dλ), for some

function W : [0, 2π] → R, see section 12.7 in Kreiss and Neuhaus (2006) for details. Therefore, the
frequency domain bootstrap can be applied to those statistics. This bootstrap scheme creates new
samples in the frequency domain. Some authors, c.f. Jentsch and Kreiss (2010) or Kirch et al. (2011),
extended the idea of the frequency domain bootstrap to create also samples in the time domain.

The residuals used within such a residual bootstrap procedure can be bootstrapped wild. Hence,
instead of using the estimated residuals some predefined distribution is used to sample residuals.
Usually the residuals are sampled i.i.d., however it is possible to give these residuals also a prede-
fined dependent structure.

1.3 Network Fundamentals
In its most general form a network denotes simply a collection of interconnected things, see (Ko-
laczyk, 2009, Chapter 1). Network data occur inmany different fields such as social sciences, biology,
physics or logistics. For instance, a social network of friendships between 34 members of a karate
club, Zachary (1977), a network representing the topology of the western states power grid of the

1 Introduction
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United States, Watts and Strogatz (1998), or a network of human contact which could help to under-
stand epidemics, Rocha et al. (2011).

A graph structure is used to describe this mathematically. A graph G = (V, E) is a mathematical
structure consisting of a set V of vertices and a set E of edges. In this work the vertices are labeled
by 1, . . . , n such that V = {1, . . . , n}. Here, we consider directed edges. Consequently, E consists
of ordered pairs {u, v}, u, v ∈ V. In the undirected case there is no distinction between {u, v} and
{v, u}. An edge {u, u} is denoted as a loop and it is also possible that an edge {u, v} is contained
multiple times in E. Such edges are denoted as multi-edges. Graphs with directed edges andmulti-
edges are also denoted as multi-digraphs, see (Kolaczyk, 2009, Chapter 2). The connectivity of a
graph G can be captured in an n × n matrix A with entries Aij = |{e ∈ E : e = (i, j)}|. The matrix
A is called the adjacency matrix and entry i, j gives the number of edges from vertex i to vertex j.
The row sum douti = Ai+ = ∑n

j=1 Aij gives the number of edges which are going out from vertex
i and douti is denoted as the out-degree. The number of edges going into vertex i is given by the
column sum dini = A+i = ∑n

j=1 Aji and is denoted as the in-degree. A graph with no multi-edges
can contain at most n2 edges. Hence, the density of a graph with no multiple edges can be defined
by den(G) = |E|/(n2). We denoted a network as sparse if |E| = O(n) and dense if |E| = O(n2).

In the example of the karate club, Zachary (1977), a vertex represents a person and an edge between
two vertices represents friendship between the corresponding persons.

In this work a dynamic network is given by a family of graphs {Gt = (Vt, Et), t ∈ Z} and a
static network is given by a single graph G. That is why often the terms ’graph’ and ’network’ are
used inter-changeably. If a static number of vertices is considered, then a dynamic network can be
described by a time-dependent adjacency matrix Ad = {Adt, t ∈ Z}.
Several statisticalmodels have been developed to describe such network data. An importantmodel
class is the exponential random graph model (ERGM), see section 6.5 in Kolaczyk (2009). We denote
that a random vector Z belongs to an exponential family if its probability function can be expressed
in the form PΘ(Z = z) = exp(Θ�g(z) − φ(Θ)), where Θ ∈ Rp is a vector of parameters, g is
a p-dimensional function of z, and φ(Θ) is a normalization term, c.f. equation (6.23) in Kolaczyk
(2009) or section 4.4 inMood (1970). LetYij, i, j = 1, . . . , n be a binary random variable indicating the
presence or absence of an edge from vertex i to vertex j. Then, an exponential random graph model
is amodel for which the joint distribution of elements inY is specified in exponential family form. A
special case of the ERGMs is the Bernoulli random graph model. For these models, it is considered
that the edges are independent to each other, hence, Yi,j is independent to Ys,k for any i, j �= s, k.
Furthermore, Yi,j, i, j = 1 . . . , n is Bernoulli distributed and often it is further simplified that all
edges share one common parameter. An ERGM describes a static network, however, Hanneke and
Xing (2007) have extended these models to dynamic networks. In the dynamic setting, a common

1.3 Network Fundamentals
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assumption is that the network possesses some form of Markov property, c.f. Crane (2015). Hence,
for a dynamic network with a static number of vertices this means that Ad = {Adt, t ∈ Z} is a
Markov process.

1 Introduction
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2 Estimated Wold Representa-
tion and Spectral-Density-Driven
Bootstrap for Time Series
Based on: Krampe, J., Kreiss, J.-P. and Paparoditis, E.: Estimated Wold representation and spectral-
density-driven bootstrap for time series. J. R. Stat. Soc. B. (2018)

2.1 Introduction
The spectral density, if it exists, plays an important role as a quantity which completely describes
the so-called second-order properties of stationary time series. A broad literature exists on spectral
density estimators, among them parametric (e.g. autoregressive) estimators, nonparametric (e.g. lag
window or smoothed periodogram) estimators or semiparametric estimators as a mixture of both.
Time series analysts typically are rather skilled in estimating spectral densities and they know, de-
pending on the required application, the pros and cons of the various estimators. This work intends
to bring together several bootstrap procedures under the umbrella of spectral density estimation.

Recall that for a purely nondeterministic and stationary stochastic process X = (Xt, t ∈ Z) with
spectral density f , Szegö’s factorization expresses f as a power series. The coefficients of this fac-
torization, appropriately normalized, coincide with the coefficients of the well-known Wold rep-
resentation of X. Recursive formulas, which make use of the Fourier coefficients of log( f ) - the
so-called cepstral-coefficients -, to calculate the coefficients of the Wold representation of the pro-
cess have been developed; cf. Pourahmadi (1983). Moreover, if f is strictly positive then X also obeys
an autoregressive (AR) representation and similar recursive formulas to compute the coefficients of
this representation have also been derived; see again Pourahmadi (1983). Using these recursions we
suggest a procedure to estimate the coefficients of both the moving average (MA) and the autore-
gressive representations based on an estimator f̂n of the spectral density f . In particular, we show
that under certain conditions on f and on the used estimator f̂n, the sequence of coefficients of the
Wold and of the autoregressive representation of the process can be consistently estimated. Fur-
thermore, under additional smoothness conditions the pointwise consistency of the estimators can
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
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be extended to uniform consistency for the entire sequence of coefficients. It should be noted that
the factorization of the spectral density has been considered in the literature also for implementing
and investigating the so-called Wiener-Kolmogorov predictor in linear prediction (cf. Jones (1964),
Bhansali (1974, 1977) and Pourahmadi (1983)).

The availability of estimates of themoving average coefficients of theWold representation enables
the development of a general spectral-density-driven bootstrap (SDDB) procedure for time series. In
particular, a pseudo time series can be generated by using the estimated sequence ofmoving average
coefficients and an appropriately chosen sequence of pseudo innovations. The resulting bootstrap
procedure is then fully determined by the particularly chosen spectral density estimator f̂n and the
stochastic properties of the generated pseudo innovations. The estimatedWold representation used
should mainly be regarded as a means to an end to generate a pseudo time series which exactly has
the chosen spectral density estimator as its spectrum.

For instance, choosing a parametric autoregressive spectral density estimator, the coefficients of
the estimated Wold representation coincide with the coefficients of the inverted estimated autore-
gressive polynomial and therefore, the autoregressive model can just as well be used to generate the
bootstrap data. In other words, using a parametric autoregressive spectral density estimator will
lead to the well-known AR-sieve bootstrap for time series (cf. Kreiss (1992), Bühlmann (1997) and
Kreiss et al. (2011)). However, a parametric autoregressive spectral density estimator often is not the
first choice. Let us consider a nonparametric competitor, for instance, a lag window estimator of
f with truncation lag Mn. As we will see, this will lead us essentially to a moving average process
of finite order Mn which can be used to generate the pseudo time series. Therefore, the spectral-
density-driven bootstrap proposed in this work, is a general notion of bootstrap for time series
which allows for a variety of possibilities to generate the pseudo time series. These possibilities
are determined by the particular spectral density estimator f̂n used to obtain the estimates of the
coefficients of the Wold representation. Notice that although the spectral-density-driven bootstrap
generates bootstrap pseudo time series in the time domain, the second-order dependence structure
of the underlying process is entirely mimicked in the frequency domain by means of the selected
spectral density estimator used. Thus, various well-known and flexible methods for spectral density
estimation can be used in our bootstrap method. As a consequence, we formulate the assumptions,
which are needed for our theoretical developments, in terms of the spectral density and its esti-
mator, only. This allows us to restrict the class of admissible spectral density estimators as little as
possible.

Fed by independent and identically distributed (i.i.d.) pseudo innovations the proposed spectral-
density-driven bootstrap generates pseudo time series stemming from a linear process. For such
a choice of pseudo innovations we compare our bootstrap proposal to some other linear bootstrap

2 Spectral-Density-Driven Bootstrap
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procedures, like the AR-sieve bootstrap (cf. Kreiss (1992) and Bühlmann (1997)) and the linear pro-
cess bootstrap, cf. McMurry and Politis (2010). As already indicated, it is shown that the AR-sieve
bootstrap is a special case of the spectral-density-driven bootstrap which is obtained if a parametric
autoregressive spectral density estimator f̂n is used. Furthermore, we show that the linear process
bootstrap essentially generates pseudo observations by factorizing banded autocovariance matri-
ces. This technique is related to the factorization of spectral densities which is used in this work.
However, in finite samples the two approaches differ from each other.

It is worth mentioning that pseudo innovations generated in a different way than i.i.d. could also
be used in the proposed spectral-density-driven bootstrap procedure. For instance, pseudo inno-
vations generated by means of a block bootstrap applied to appropriately defined residuals may
be used. Although such a proposal would most likely extend the range of validity of the spectral-
density-driven bootstrap to nonlinear time series, we do not consider such an approach in this
work, i.e., we restrict ourselves to the linear process set-up. We show that if the pseudo innovations
are generated by means of an i.i.d. wild bootstrap that appropriately mimics the first, the second,
and the fourthmoment structure of the true innovations, then the proposed spectral-density-driven
bootstrap is asymptotically valid for a wide range of statistics commonly used in time series analysis.
Besides the sample mean, statistics described by the so-called class of generalized autocovariances
are also considered. Note that this class includes sample autocovariances, sample autocorrelations
and lag window spectral density estimators as special cases; see section 2.3 for details. We demon-
strate by means of simulations that our asymptotic findings coincide with a good finite sample
behavior of the proposed bootstrap procedure. Furthermore, the performance of the new boot-
strap method is compared with that of the asymptotic normal approximations and of some other
bootstrap competitors, like the linear process, the AR-sieve and the tapered block bootstrap. An
R-code to generate pseudo time series with the spectral-density-driven bootstrap is available at
www.tu-bs.de/Medien-DB/stochastik/code-snippet_sddb.txt.

The chapter is organized as follows: Section 2.2 briefly describes the Wold and the AR represen-
tation of a stationary time series and discusses the method used to estimate the entire sequence of
coefficients in both representations. Local and global consistency properties of the estimators are
established. Section 2.3 introduces the spectral-density-driven bootstrap procedure for time series
and establishes, for linear processes and for relevant classes of statistics, its asymptotic validity. A
comparison with the AR-sieve and with the linear process bootstrap is also given in this section.
Section 2.4 presents some numerical simulations investigating the finite sample behavior of the
proposed bootstrap method and compares its performance with that of other bootstrap methods
and of asymptotic normal approximations. A real-life data example demonstrates the applicability
of the suggested bootstrap procedure. Auxiliary results as well as proofs of the main results are
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deferred to section 2.6. Answer on how the spectral density factorization can be used to estimate
a MA(q) model is shown in section 2.7. A detailed comparison with the linear process bootstrap
is given in section 2.8. Finally, further simulation results and proofs are given in section 2.9 and
section 2.10.

2.2 Estimated Wold Representation
2.2.1 Moving Average and Autoregressive Representation
Stationary processes are commonly classified using the concept of linear prediction; see for example
Brockwell and Davis (1991, Section 5.7) or Pourahmadi (2001, Section 5.5). To elaborate, let X =

{Xt, t ∈ Z} be a stationary stochastic process and define byMn(X) = span{Xt,−∞ < t ≤ n} and
M−∞(X) =

⋂∞
n=−∞ Mn the closed linear subspaces of theHilbert spaceM(X) = span{Xt, t ∈ Z}.

Note that an overlined set denotes its closure. Let PMn(X)Xn+1 be the projection of Xn+1 onto
Mn(X) and define by σ2 = E|Xn+1 − PMn(X)Xn+1|2 the mean square error of the best (in the
mean square sense) one-step, linear predictor. The process X is called deterministic if and only if
Xt ∈ M−∞(X) or equivalently if and only if σ2 = 0. It is called nondeterministic if Xn+1 �∈ Mn(X)

and consequently σ2 > 0. Furthermore, it is called purely-nondeterministic if it is nondeterministic
andM−∞(X) = {0}.
If the process X possesses a spectral density f , which is the case if ∑h∈Z |γh| < ∞, with γh =

Cov(Xt, Xt+h), then it holds true that X is nondeterministic if and only if
∫
(−π,π]

log f (λ)dλ > −∞, (2.2.1)

see Pourahmadi (2001, Theorem VII).
Wold’s decomposition, see Pourahmadi (2001, Theorem 5.11), guarantees that any nondetermin-
istic process can be divided into a deterministic and a purely-nondeterministic part. Furthermore,
the purely-nondeterministic part of the process has a unique one-sided moving average (MA) rep-
resentation given by

Xt =
∞

∑
k=0

ckεt−k, t ∈ Z, (2.2.2)

where ∑k |ck|2 < ∞ and {εt, t ∈ Z} is a white noise process defined by εn+1 = Xn+1 − PMn(X)Xn+1,
n ∈ Z, called the innovation process. Here, white noise refers to an uncorrelated time series. Notice
that even if X is a linear process driven by i.i.d. innovations, the white noise process appearing in
the corresponding one-sided moving average representation (2.2.2) might not be i.i.d.. To give an
example consider the linear, first order moving average process, Xt = et + θet−1 where {et, t ∈ Z}
is an i.i.d. process and θ > 1. The Wold representation of this process is given by Xt = εt + θ−1εt−1
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where εt = et + (1− θ2)∑∞
j=1(−θ)−jet−j is white noise with variance θ2. Obviously, the innovations

εt are not independent.

Another interesting one-sided representation of the process X is the so-called autoregressive rep-
resentationwhich appears if the spectral density f is bounded away fromzero, i.e., if infλ∈[0,π] f (λ) =

C > 0. Instead of using the full history of the innovation process {εt, t ∈ Z}, in this case the full
history of the process X itself is used to express the value Xt at any time point t. Xt can then be
written as

Xt =
∞

∑
k=1

bkXt−k + εt, t ∈ Z, (2.2.3)

where∑k |bk|2 < ∞ and {εt} is the samewhite noise innovation process as in (2.2.2); see Pourahmadi
(2001, Section 6.2.1). Expression (2.2.3) is called the autoregressive representation of the process X

and should not be confused with that of a linear, infinite order autoregressive process driven by i.i.d.
innovations. To demonstrate this, consider again the previous example of the linear, noninvertible
moving average process Xt = et + θet−1 with θ > 1. This process has the autoregressive representa-
tion Xt = −∑∞

j=1(−θ)−jXt−j + εt where {εt, t ∈ Z} is the uncorrelated but not independent white
noise processes appearing in the Wold representation of Xt.

To derive recursive formulas for the coefficients in the moving average representation (2.2.2) and
the autoregressive representation (2.2.3), we start with some basic factorization properties of the
spectral density f . Notice first that f can be expressed as f (·) = (2π)−1|V(exp(−i·))|2 for a power
seriesV(z) = ∑∞

k=0 vkzk and that such a factorization exists if and only if condition (2.2.1) is fulfilled;
see Szegö (1921). The above factorization of the spectral density is not unique. However, if we restrict
ourselves to power series which have no roots inside the unit disk and appropriately normalize the
coefficients, a unique representation occurs. The coefficients of this unique power series coincide
with the coefficients ck of the Wold representation (2.2.2), if additionally, the power series V(z) is
appropriately normalized, i.e., if Ṽ = V/v0 is used. We denote this unique and normalized power
series by C(z) = ∑∞

k=0 ckzk. Notice that (2.2.1) ensures, that the Fourier coefficients of log f are
well defined. Furthermore, since C(z) has no zeros inside the open unit disc, log(C(z)) is analytic
inside the same region and we have for |z| < 1 that

σ(2π)−1/2
∞

∑
k=0

ckzk = exp

(
a0/2 +

∞

∑
k=1

akzk

)
, (2.2.4)

where ak is the k-th Fourier coefficients of log f ,

ak =
∫ π

−π
log f (λ) exp(−ikλ)dλ/(2π). (2.2.5)
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Differentiation of equation (2.2.4) together with comparison of coefficients leads to a recursive
formula to calculate the coefficients {ck} of this power series by using the Fourier coefficients of
log f , see Pourahmadi (1983, 1984). In particular, setting c0 = 1, the following recursive formula can
be used to obtain the coefficients {ck},

ck+1 =
k

∑
j=0

(
1 − j

k + 1

)
ak+1−jcj, k = 0, 1, 2, . . . . (2.2.6)

Furthermore, σ2 = 2π exp(a0). If the process X possesses also the autoregressive representa-
tion (2.2.3), then the coefficients (bk)k∈N of this representation can be calculated using the relation
C(z)−1 = B(z) = ∑∞

k=0(−bk)zk. Setting b0 = −1 the corresponding recursive formula to obtain
the bk’s is given by

bk+1 = −
k

∑
j=0

(
1 − j

k + 1

)
ak+1−jbj, k = 0, 1, 2, . . . . (2.2.7)

A proof of (2.2.4) can be found in the section 2.10, Lemma 2.10.2. As we see from the proof of
(2.2.4), this approach cannot be transferred directly to the multivariate case. Matrix multiplication
is not commutative and therefore the exponential laws do not apply for matrices. However, these
properties are essential for the proof of (2.2.4). Moreover, there are examples where (2.2.4) is not
valid in the multivariate case. Consequently, the recursive formulae (2.2.6) and (2.2.7) cannot be
directly applied to multivariate time series.

2.2.2 Estimating the Coefficients of the Wold Representation
Our next goal is to estimate the coefficients {ck, k ∈ N} of theWold representation (2.2.2). The basic
idea is to use an estimator f̂n of the spectral density f to get estimates of the Fourier coefficients
of log( f ) and to plug in these estimates into the recursive formula (2.2.6). Notice that estimates of
the coefficients {bk, k ∈ N} of the autoregressive representation (2.2.3) can be obtained by using
formula (2.2.7) and the estimates of the ak’s.

Let âk,n = (2π)−1
∫ π
−π log( f̂n(λ)) exp(−ikλ)dλ be the estimator of the k-th Fourier coefficient of

log( f ) and denote by {ĉk,n, k ∈ N}, the estimators of the coefficients of the Wold representation
obtained using formula (2.2.6), e.g.

ĉ0,n = 1, ĉk+1,n

k

∑
j=0

(1 − j/(k + 1)) âk+1−j,nĉj,n, k = 0, 1, 2, . . . . (2.2.8)

Let {b̂k,n} be the corresponding estimators of the coefficients of {bk} using formula (2.2.7).
The calculation of Fourier coefficients of log f can be done efficiently by using the Fast Fourier
Transform; see for instance Markel (1971). Since this algorithm is especially fast on girds identi-
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cal to powers of 2, the sample sizes considered in the simulation study are chosen to be of that
order. When approximating the Fourier coefficients of log f̂n by a sum over m < ∞ (not necessar-
ily Fourier) frequencies to compute the moving average or autoregressive coefficients, respectively,
one faces two sources of approximation errors. On the one hand, the approximated Fourier co-
efficients become periodic, i.e., it is not recommended to use the recursive formula for the com-
putation of the coefficients beyond periodicity one. On the other hand, we get an approximation
error which decreases with the smoothness of log f̂n, see Epstein (2005) for details. Using the re-
cursive formula this approximation error is transferred to the Wold’s coefficients. If we assume
that log f̂n is continuously differentiable then the k-th Wold’s coefficient possesses an approxima-
tion error of orderO(1/(mk)). The number of frequencies used depends on the computing power
available and apart from numerical issues, the more frequencies are used the better. For spectral
densities bounded away from zero, summability properties of the autocovariance function such as

∑h(1+ |h|)r|γ(h)| < ∞, transfer to theWold coefficients, hence,∑∞
k=0(1+ k)r|ck| < ∞. This follows

by (2.4) and the Wiener-Levy-Theorem, see for instance Bhatt and Dedania (2003). Consequently,
the coefficients usually decay rapidly and the approximation error quickly vanishes. To give an ex-
ample, consider Model II used in the simulation study; see section 2.4. This model possesses the
slowest decaying autocovariance of all three models considered. Nevertheless, using 1024 instead of
8192 Fourier frequencies to compute Wold’s coefficients gives an overall squared error of less than
10−5.
It is clear that the properties of the estimators ĉk,n and b̂k,n depend heavily on the properties of the
estimator f̂n. To obtain consistency, the following condition suffices which essentially requires that
f̂n is a uniformly consistent estimator of f . For lag window estimators such a uniform consistency
has been established by Jentsch and Subba Rao (2015, Lemma A.2), and for autoregressive spectral
density estimators by Bühlmann (1995, Theorem 3.2).

Assumption 1 The estimator f̂n satisfies
∫
(−π,π] log( f̂n(λ))dλ > −∞. Furthermore,

sup
λ∈[0,π]

| f̂n(λ)− f (λ)| P→ 0, as n → ∞. (2.2.9)

Then, the following result can be established.

Theorem 2.2.1. Suppose that f satisfies (2.2.1) and that Assumptions 1 holds true. Then, as n → ∞,

a) supk∈N |âk,n − ak| P→ 0,

and for every fixed k ∈ N,

b) ĉk,n
P→ ck,

c) b̂k,n
P→ bk.

2.2 Estimated Wold Representation
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By the above theorem, for an M-dependent process, we have ∑M
k=0 |ck − ĉk,n| = oP(1). Imposing

more conditions on f and its estimator f̂n, the consistency properties of the estimators âk,n and ĉk,n

can be refined and inequalities, similar to the well-known Baxter inequality for the AR-coefficients,
Baxter (1962), can be established. Such inequalities are useful since they control the overall estima-
tion error that occurs when the estimated spectral density f̂n instead of the true spectral density f

is used in order to obtain the estimates of interest.

Assumption 2 The estimator f̂n fulfills the following conditions.

(i) There exists constants 0 < C1 < C2 < ∞ such that C1 ≤ f̂n(λ) ≤ C2 for all λ ∈ [0, π] and all
n ∈ N.

(ii) The first derivative of f̂n with respect to λ exists, is continuous and integrable. Furthermore,

sup
λ∈[−π,π]

∣∣∣∣ d
dλ

f̂n(λ)− d
dλ

f (λ)
∣∣∣∣ P→ 0, as n → ∞. (2.2.10)

Condition (ii) can be verified for lag window estimators by using similar arguments as in the proof
of Lemma A.2 in Jentsch and Subba Rao (2015) under the same cumulant conditions and a slightly
faster decay of the autocovariance function. However, in the case of the derivate the rate of conver-
gence of the estimation error is slightly slower. For the autoregressive spectral density estimators
the same condition can be verified by using arguments similar to those used in the proof of The-
orem 3.2 in Bühlmann (1995). Notice that boundedness of the spectral density is ensured by an
absolute summable autocovariance function, which is a common assumption for bootstrap proce-
dures for time series. Furthermore, the assumption regarding the existence of derivatives of the
spectral density can be transferred to assumptions on the summability of the autocovariance func-
tion. However, since the bootstrap approach proposed in this work is spectral-density-driven, we
prefer to formulate the conditions needed as assumptions for the spectral density of the underly-
ing process. The following theorem summarizes the properties of the estimators {âk,n, n ∈ N} and
{ĉk,n, n ∈ N}.
Theorem 2.2.2. Let the spectral density f be strictly positive and bounded with continuous and integrable

first derivative. Then, as n → ∞,

(a) If f̂n satisfies Assumption 1 and Assumption 2(i) then

∞

∑
k=−∞

|âk,n − ak|2 =
∫ 2π

0
| log f (λ)− log f̂n(λ)|2dλ/(2π)

P→ 0 (2.2.11)

and
∞

∑
k=0

|ĉk,n − ck|2 P→ 0. (2.2.12)

2 Spectral-Density-Driven Bootstrap
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(b) If f̂n satisfies Assumption 1 and Assumption 2, then

∞

∑
k=−∞

k2|âk,n − ak|2 P→ 0 and
∞

∑
k=1

|âk,n − ak| P→ 0. (2.2.13)

Furthermore,
∞

∑
k=0

k2|ĉk,n − ck|2 P→ 0 and
∞

∑
k=0

|ĉk,n − ck| P→ 0. (2.2.14)

Relation (2.2.4) plays a key role in the proofs of assertions (2.2.12) and (2.2.14). Notice that since
C(z)−1 = B(z), similar relations for {bk, k ∈ N} can be derived. Furthermore, the results of
Theorem 2.2.2 can be straightforwardly extended to the sequence of estimation errors {(b̂k,n − bk),
k ∈ N}.
There are some alternative approaches to estimate the coefficients ck and bk which have been
proposed in the literature. In particular and for estimating the coefficients ck, one option is the
innovation-algorithm which works by fitting MA(q) models where the order q increases to infinity
as the sample size n increases to infinity; see (Brockwell and Davis, 1991, Proposition 5.2.2). For
estimating the coefficients bk, commonly an AR(p)model is fitted to the time series at hand bymeans
of Yule-Walker estimators, where, the order p is also allowed to increase to infinity with sample
size; see (Brockwell and Davis, 1991, Section 8.1). Under certain conditions, both approaches are
consistent; see (Pourahmadi, 2001, Theorem 7.14). However, the basic idea behind these approaches
differs from ours and so do the estimators obtained via spectral density factorization. In the above
mentioned approaches, the estimated autocovariance matrix is used to fit a finite moving average
or a finite autoregressive model. Consistency of the corresponding estimators is then obtained by
allowing the order of the fitted model to increase to infinity at an appropriate rate as the sample
size n increases to infinity. These approaches face, therefore, two sources of errors. The first is
the estimation error which is caused by the fact that estimated autocovariances are used instead
of true ones. The second is the approximation error which is due to the fact that a finite order
model is used to approximate the underlying infinite order structure. Although the estimation
error cannot be avoided, our approach does not necessarily use a finite order model since it is
based on a (uniformly) consistent estimator f̂n of the spectral density f . So the approximation
error caused by our estimation procedure is different. This error depends on the quality of the
spectral density estimator f̂n used to approximate the true spectral density f , where f̂n is selected
from a wide range of possible estimators and not only from those obtained by using finite order
autoregressive or moving average parametric models. The innovation-algorithm is similar to the
factorization of autocovariance matrices which is used in the linear process bootstrap. In section
2.8 a simple example is discussed to point out the differences between factorizing autocovariance
matrices and spectral densities.
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2.2.3 Spectral Density Estimators

Since our estimation procedure relies on a spectral density estimator f̂n, we briefly discuss the vari-
ety of such estimators that can be used and their impact on the estimators {ĉk,n} or {b̂k,n} obtained.
As already mentioned, spectral densities can be estimated using a parametric approach, that is,
by fitting a parametric model to the time series at hand and using the spectral density of the fitted
model as an estimator of the spectral density of the process. Since autoregressive models are easy
to fit, they are commonly used for such a purpose; see Akaike (1969), Shibata (1981) and Brockwell
and Davis (1991, Section 10.6). In this context, parameter estimators, like Yule-Walker estimators,
are popular because they ensure invertibility of the corresponding estimated AR-polynomial; see
Brockwell and Davis (1991, Section 8.1). Now, if an autoregressive spectral density estimator is used
in the spectral factorization procedure, then the estimated coefficients {ĉk,n} obtained are identical
to those appearing in the power series expansion of the inverted estimated autoregressive polyno-
mial. Furthermore, the corresponding sequence of estimated coefficients {b̂k,n} is finite and the
b̂k,n’s, k ∈ {1, 2 . . . , p}, coincide with the estimated autoregressive parameters.

Using nonparametric methods like lag window or kernel smoothed periodogram estimators is
another popular approach to estimate the spectral density; cf. Brockwell and Davis (1991, Section
10.4). Lag window estimators truncate the estimated autocovariances at a given lag controlled by a
truncation parameter. Such estimators of the spectral density can be interpreted as obtained by (im-
plicitly) fitting a finite ordermoving averagemodel to the time series at hand; see also Brockwell and
Davis (1991, Prop. 3.2.1). The sequence of estimated coefficients {ĉk,n} of the Wold representation
obtained by using such a spectral density estimator is finite with ĉk,n = 0 for values of k larger than
the truncation parameter. Due to the asymptotic equivalence between lag window and smoothed
periodogram estimators, similar remarks can be made also for spectral density estimators obtained
by smoothing the periodogram. Furthermore, as mentioned in section 2.2, lag window estimators
as well as autoregressive estimators satisfy Assumptions 1 and 2, see (Jentsch and Subba Rao, 2015,
Lemma A.2) and (Bühlmann, 1995, Theorem 3.2) respectively.

A different nonparametric approach to estimate the spectral density is to truncate the Fourier se-
ries of log( f ) which presumes an exponential model for the spectral density; see Bloomfield (1973).
Such a model is given by f (λ) = (2π)−1σ2 exp{2 ∑r

j=1 θj cos(λj)}. Unlike truncating the autoco-
variance function, non-negative definiteness of the spectral density f is ensured for all possible
values of the parameters θj, j = 1, . . . , r. As Bloomfield (1973) pointed out, the autocovariance func-
tion of such an exponential model cannot, in general, be described by a finite autoregressive or a
finite moving average model. Thus, using such an estimator of the spectral density in the factor-
ization algorithm leads to an infinite sequence of estimators (ĉk,n) or (b̂k,n) respectively. Notice
that the Fourier coefficients of log( f ) are also known as the cepstral coefficients or vocariances and
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they have been widely used in the signal processing literature to estimate the spectral density; see
Stoica and Sandgren (2006) and Kaderli and Kayhan (2000). However, Stoica and Sandgren (2006)
define the cepstral coefficients as the finite approximation over N Fourier frequencies and the inte-
gral definition, as we have used in (2.2.5), is called ’theoretical cepstrum’; see Stoica and Sandgren
(2006, Eq. (8)). The finite approximated cepstral coefficients cannot be linked directly without error
to Wold’s coefficients.

An interesting combination of nonparametric and parametric approaches for spectral density es-
timation is offered by the so-called pre-whitening approach; see Blackman and Tukey (1958). The
idea is to use a parametric model to filter the time series and then apply a nonparametric estimator
to the time series of residuals. Using an AR-model for pre-whitening (filtering) and a lag window
estimator for estimating the spectral density of the residuals, can be interpreted as (implicitly) fit-
ting an ARMA-model to the time series at hand. The idea is that the parametric AR-model fit is able
to represent the peaks of the spectral density quite well while the lag window estimator applied
to the residuals can capture features of the spectral density that are not covered by the parametric
fit. Notice that for the pre-whitening approach consistency of the lag window estimator is obtained
even in the case, where the parametric fit does not improve the estimation. However, since only
n − p instead of n observation are used, the rate of converge is slightly slower. Consequently even
for n-dependent p, as long as n − p(n) → ∞ as n → ∞ the pre-whitening approach is consis-
tent and satisfy Assumption 1 and 2. Using such a spectral density estimator for the factorization
algorithm the coefficients {ĉk,n} and {b̂k,n} obtained will be those of the infinite ordermoving aver-
age representation and infinite order autoregressive representation of the (implicitly) fitted ARMA
model, respectively. However, to reduce numerical errors, the use of the ARMA representation is
recommend, the moving average coefficients are obtained by the factorization of the pre-whitened
spectral density and the autoregressive coefficients are those of the fitted AR-model.

2.3 Spectral-Density-Driven Bootrstrap
2.3.1 The Spectral-Density-Driven Bootrstrap Procedure

In the previous section we have dealt with the coefficients {ck, k ∈ N} of the moving average and
{bk, k ∈ N} of the autoregressive representation of the process. For the coefficients in both repre-
sentations, consistent estimators have been developed. Consequently, both representations can be
used in principle to develop a bootstrap procedure to generate pseudo time series X∗

1 , X∗
2 , . . . , X∗

n.
We focus in this work on the moving average representation, since it exists for every spectral den-
sity. Clearly, such a bootstrap procedure will be determined by the spectral density estimator f̂n

used to obtain the coefficients {ĉk,n} and by the generated series of pseudo innovations {ε∗t } (cf.
Step 3 below). Thus, the tuning parameters of this bootstrap procedure coincide with those used
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for the spectral density estimation. Consequently, one can follow data-driven methods proposed in
the literature to choose these parameters. Now, given an estimator f̂n of the spectral density f , the
spectral-density-driven bootstrap algorithm consists of the following steps.

Step 1. Compute the Fourier coefficients of log( f̂n) given by
âk,n = 1/(2π)

∫ 2π
0 log( f̂n(λ)) exp(−ikλ)dλ for k = 1, 2, . . . .

Step 2. Let σ̂2
n = 2π exp(â0,n) and compute the coefficients ĉk,n, k = 1, 2, . . . using the formula

ĉk+1,n = ∑k
j=0 (1 − j/(k + 1)) âk+1−j,nĉj,n, k = 0, 1, 2, . . . , and the starting value ĉ0,n = 1.

Step 3. Generate i.i.d. pseudo innovations {ε∗t , t ∈ Z} with mean zero and variance σ̂2
n .

Step 4. The pseudo time series X∗
1 , X∗

2 , . . . , X∗
n is then obtained as X∗

t = ∑∞
j=0 ĉj,nε∗t−j + X̄n, t =

1, 2, . . . , n, where X̄n = n−1 ∑n
t=1 Xt is the sample mean.

It should be stressed that the above bootstrap algorithm with i.i.d. pseudo innovations represents
a general procedure to generate a pseudo time series stemming from a linear process. Regarding
the particular generation of the i.i.d. innovations in Step 3, different possibilities can be considered
depending on the stochastic properties of the time series at hand which should be mimicked by the
pseudo time series X∗

1 , X∗
2 , . . . , X∗

n. In particular, suppose that X1, X2, . . . , Xn stems from a linear
process and that a statistic Tn = T(X1, X2, . . . , Xn) is considered, the distribution of which should
be approximated by the bootstrap. We then propose to generate the i.i.d. innovations in a way
which asymptotically matches the first, the second and the fourth moment structure of the true
innovations εt. Matching also the fourth moment structure of εt turns out to be important for
some statistics Tn; we refer to section 2.3.3 for examples.
One possibility to achieve this requirement is, to generate the ε∗t ’s as i.i.d. random variables
with the following discrete distribution: P

(
ε∗t = σ̂n

√
κ̃4
)

= P
(
ε∗t = −σ̂n

√
κ̃4
)

= 1/(2κ̃4) and
P (ε∗t = 0) = 1 − 1/κ̃4. Here κ̃4 = κ̃4,n/σ̂4

n > 0 and κ̃4,n denotes a consistent estimator of the
fourth moment E(ε4

1) of the innovations εt. Consistent, nonparametric estimators of κ4 have been
proposed in Kreiss and Paparoditis (2012) and Fragkeskou and Paparoditis (2015).
In the above bootstrap algorithm, the pseudo time series X∗

1 , X∗
2 , . . . , X∗

n is generated using the es-
timated coefficients of the moving average representation. Modifying the algorithm appropriately,
the pseudo time series can be also generated using the estimated autoregressive representation of
the process. For this, we set σ̂2

n = 2π exp(â0,n) and calculate the coefficients b̂k,n, k = 0, 1, 2, . . . us-
ing the recursive formula starting with b̂0,n = −1 and b̂k+1,n = −∑k

j=0 (1 − j/(k + 1)) âk+1−j,nb̂j,n,

for k = 0, 1, 2, . . . . Using these estimates of the coefficients of the autoregressive representation,
the pseudo time series is then obtained as X∗

t = ∑∞
j=1 b̂j,n(X∗

t−j − X̄n) + ε∗t + X̄n.
Here, we stress the fact that the spectral-density-driven bootstrap should not be considered as an
MA-sieve bootstrap procedure, where the order of the moving average model is allowed to increase
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to infinity as the sample size increases to infinity. The spectral-density-driven bootstrap procedure
is rather governed by the spectral density estimator f̂n used, which appropriately describes the entire
autocovariance structure of the underlying process. The moving average representation in this
bootstrap procedure is solely used as a device to generate a time series with a second-order structure
characterized by the spectral density estimator f̂n used. Notice however, that some spectral density
estimators can implicitly lead to an MA-sieve type bootstrap.

The spectral-density-driven bootstrap can be easily used in R, R Core Team (2016). Apart form
the recursive formulas all parts are already implemented. An R-code example to generate pseudo
bootstrap time series with the spectral-density-driven bootstrap can be found at www.tu-bs.de/
Medien-DB/stochastik/code-snippet_sddb.txt

2.3.2 Comparison with other Linear Bootstrap Procedures
The idea of the AR-sieve bootstrap is to fit a p-th order autoregressive model to the time series at
hand and to use the estimated model structure together with i.i.d. pseudo innovations generated
according to the empirical distribution function of the centered residuals. In order to fully cover the
second-order dependence structure of the underlying process X, the order p of the fitted AR-model
is allowed to increase to infinity (at an appropriate rate) as the sample size increases to infinity; see
Kreiss (1992), Paparoditis and Streitberg (1991), and Bühlmann (1997). The range of validity of this
bootstrap procedure has been investigated in Kreiss et al. (2011). As already mentioned, the AR-
sieve bootstrap is a special case of the spectral-density-driven bootstrap described in section 2.3.1
when f̂n is chosen to be a parametric AR(p) spectral density estimator and the innovations {ε∗t }
are generated through i.i.d. resampling from the centered residuals of the autoregressive fit. Us-
ing the estimated AR-parametric spectral density, the factorization algorithm leads to a sequence
{ĉk,n} of estimated moving average coefficients that correspond to the MA(∞) representation ob-
tained by inverting the estimated autoregressive polynomial. However, and as already mentioned,
the spectral-density-driven bootstrap is a much more general procedure since it is not restricted to
describing the dependence structure of the time series at hand by means of a finite order paramet-
ric autoregressive model. Notice that both bootstrap approaches work under similar conditions,
see Assumptions 1 and 2. However, if a lag window spectral density estimator is used, there are
situations where the spectral-density-driven bootstrap is valid, whereas validity of the AR-sieve is
not clear; see section 2.3.3 for details.

The linear process bootstrap, established by McMurry and Politis (2010) is also related to the
spectral-density-driven bootstrap. It uses the factorization of banded autocovariance matrices in-
stead of the spectral density itself to generate the pseudo observations. A factorization of autoco-
variancematrices is similar to the innovation algorithm, see Brockwell and Davis (1991, Proposition
5.2.2). As pointed out at the end of section 2.2.2 this leads in finite sample situations to different

2.3 Spectral-Density-Driven Bootrstrap

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



26

results. Furthermore, the linear process bootstrap aims to generate a data vector with a given co-
variance structure, while the spectral-density-driven bootstrap generates a stationary time series. A
more detailed discussion can be found in the section 2.8.

2.3.3 Bootstrap Validity
In this section we prove validity of the proposed spectral-density-driven bootstrap procedure for the
sample mean and under quite general dependence assumptions on the underlying process which
go far beyond linearity. Furthermore, we show that if the underlying process is linear, the same
bootstrap procedure driven by i.i.d. pseudo innovations is valid for the class of so-called generalized
autocovariance statistics. We first focus on this general class of statistics which appears to be more
involved than that of the mean.

Definition 2.3.1. Let {dp(n), n ∈ Z} be a sequence of real numbers such that

∑h∈Z |dp(h)| < ∞, where p ∈ {1, 2, . . . , P}. Let further g : RP → R be a differentiable function. Then,

the generalized autocovariance statistic is defined as

T̂n = g(T̂n,1, . . . , T̂n,P), where for p ∈ {1, . . . , P}, (2.3.1)

T̂n,p = 1/n
n

∑
t=1

n−t

∑
h=1−t

dp(h)(Xt − X̄n)(Xt+h − X̄n) and X̄n = 1/n
n

∑
t=1

Xt.

The above class of statistics contains, among others, sample autocovariances, sample autocorre-
lations and lag window spectral density estimators. To elaborate, let h ∈ {0, . . . , n − 1} and set
d1(h) = 1 and d1(x) = 0 for x �= h. We then have that T̂n,1 = 1/n ∑n

t=1 ∑n
s=1 1{t−s=h}(Xt −

X̄n)(Xs − X̄n) = γ̂n(h). Similarly for d2(0) = 1 and d2(x) = 0 for x �= 0, we get that T̂n,2 = γ̂n(0).
Furthermore, the sample autocorrelation at lag h is obtained by choosing g(x, y) = x/y. Lag
window spectral density estimators are also included in the above class. For this, one chooses
d(h) = 1{h≤M}1/(2π)K (h/M) (1{h=0} + 1{h>0}(exp(−ihω) + exp(ihω))), where K is some ap-
propriate smoothing kernel.

Assumption 3: {Xt, t ∈ Z} is a linear process given by Xt = ∑j∈Z ϕjεt−j + μ, μ ∈ R with i.i.d.
innovations {εt, t ∈ Z}, where Eεt = 0, Eε2

t = σ2
ε , Eε4

t = κ4 and Eε8
t < ∞. We write for short

εt ∼ I ID(0, σ2
ε , κ4). The coefficients in the moving average representation fulfill the summability

condition ∑j∈Z |jϕj| < ∞.

As the following theorem shows, the proposed spectral-density-driven bootstrap procedure is
valid for approximating the distribution of statistics belonging to the class of generalized auto-
covariances. Here and in the sequel, for two random variables X, and Y, d2(X, Y) denotes Mallow’s
distance, i.e., d2(X, Y) = {∫ 1

0

(
F−1

X (x)− F−1
Y (x)

)2
dx}1/2, where FX and FY denote the cumulative

distribution functions of X and Y, respectively.
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Theorem 2.3.1. Let T̂∗
n = g(T̂∗

n,1, . . . , T̂∗
n,P), where

T̂∗
n,p = 1/n

n

∑
t=1

n−t

∑
h=1−t

dp(h)(X∗
t − X̄∗

n)(X∗
t+h − X̄∗

n), for p = 1, . . . , P,

and (dp(h))h∈Z is a sequence of real numbers as in Definition 2.3.1. Furthermore, X∗
1 , X∗

2 , . . . , X∗
n is a pseudo

time series generated using the spectral-density-driven bootstrap procedure with a pseudo innovation process

{ε∗t , t ∈ Z} satisfying ε∗t ∼ I ID(0, σ̂2
n , κ̂4,n) with κ̂4,n = E∗(ε∗t )4, a consistent estimator of κ4 which also

fulfills supn∈N κ̂4,n ≤ C for some constant C < ∞ which does not depend on n. Finally, assume that the

estimated Wold coefficients fulfill ∑k∈N |ck − ĉk,n| = oP(1) and ∑k∈N |kĉk,n| ≤ C. Then under Assumption

3 and as n → ∞,

d2(
√

n(T̂∗
n − E∗T̂∗

n ),
√

n(T̂n − ET̂n)) → 0, in probability.

The assumptions supn∈N κ̂4,n ≤ C < ∞ and ∑k∈N |kĉk,n| ≤ C are of rather technical nature and
can be satisfied by using appropriate estimators of κ̂4 and f̂n. If the spectral density estimator f̂n

fulfills supλ∈(−π,π]
d3

dλ3 log f̂n(λ) ≤ C then the requirement ∑k∈N |kĉk,n| ≤ C of the above theo-
rem is satisfied. Notice that sufficiently smooth kernels guarantee the required differentiability of
log f̂n. Furthermore, by using an appropriate truncation, boundedness of κ̂4,n and f̂n can also be
guaranteed.

In section 2.2 we gave conditions under which ∑k∈N |ck − ĉk,n| = oP(1) holds, see Theorem 2.2.1
and 2.2.2. Moreover, there are settings in which it is not clear whether the AR-sieve bootstrap is
valid while the spectral-density-driven bootstrap in connection with a lag window spectral density
estimator can lead to a valid approximation. For instance, the spectral-density-driven bootstrap
remains valid for statistics T̂n as in (2.3.1)when the time series is generated by finitemoving average
processes with unit roots, like for instance by the process Xt = εt − εt−1 or even by nonlinear
continuous transformations of M-dependent stationary processes.

The following theorem establishes validity of the spectral-density-driven bootstrap for the case of
the sample mean, which is not covered by the class of general covariance statistics Tn given in (2.3.1).
Notice, that for this case, it suffices that the pseudo innovations {ε∗t }mimic asymptotically correct
only the first and the secondmoment of the true innovations εt. Furthermore, no linearity assump-
tions of the underlying processes X are needed. What is needed is that

√
n(X̄n − μ) converges to a

normal distribution with variance 2π f (0), which, however, is fulfilled for a huge class of stationary
processes. For instance, appropriate mixing or weak dependence conditions are sufficient for this
statistic to satisfy the required asymptotic normality of

√
n(X̄n − μ). Furthermore, regarding the

spectral-density-driven bootstrap, the spectral density f and its estimator f̂n need to fulfill less re-
strictive conditions. In particular, for a lag window spectral density estimator f̂n, the assumptions
|γ(h)| ≤ C/|h|2+ε and supt ∑t1,t2,t3

|cum(Xt, Xt1 , Xt2 , Xt3)| < ∞, see Jentsch and Subba Rao (2015,
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Lemma A.2), suffice to ensure uniform consistency of f̂n. Under the same cumulant condition and
the absolute summability of autocovariance function, consistency of block bootstrap approaches
can be established for the sample mean; see Künsch (1989), Politis and Romano (1994), and Nord-
man (2009) for details. Thus, the spectral-density-driven bootstrap is applicable in similar settings
as the block-related bootstrap approaches.

Theorem 2.3.2. Assume that {Xt : t ∈ Z} is a purely nondeterministic stationary process with mean μ, spec-

tral density f , and autocovariance γ with ∑h |γ(h)| < ∞ and assume that
√

n(X̄n − μ)
D→ N (0, 2π f (0)),

as n → ∞. Denote by f̂n a uniformly consistent and bounded estimator of f fulfilling Assumptions 1 and

∑∞
k=0 |ĉk,n| < C, where C does not depend on n. Assume that X∗

1 , X∗
2 , . . . , X∗

n is generated by using the

spectral-density-driven bootstrap procedure with an i.i.d. innovation process {ε∗t , t ∈ Z}, where E∗(ε∗t ) = 0,

E∗(ε∗t )2 = σ̂2
n , and E∗(ε∗t )4 < C < ∞. Then, as n → ∞,

d2(
√

n(X̄∗
n − X̄n),

√
n(X̄n − μ)) → 0, in probability.

The assumption ∑∞
k=0 |ĉk,n| < C is satisfied if a strictly positive, differentiable, and bounded spec-

tral density estimator f̂n is used.
Notice that validity of block bootstrap approaches is often established for so-called generalized
mean statistics, see Künsch (1989, Example 2.2). For a time series X1, . . . , Xn, this class of statistics
is given by

Tn = h

(
1/(n − m + 1)

n−m+1

∑
t=1

Yt

)
, where h : Rk → Rs, s ≤ k,

and
Yt = g(Xt, Xt+1, . . . , Xt+m−1), t = 1, . . . , n − m + 1, g : Rm → Rk, k ≤ m < n

and m is fixed. Let ñ = n − m. The validity of the spectral-density-driven bootstrap for this class
can be derived by applying the results of Theorem 2.3.2. The stated cumulant and autocovariance
conditions have to be fulfilled by the process {Yt, t ∈ Z}.

Corollary 2.3.1. Let Y = {Yt : t ∈ Z} fulfill the assumptions of Theorem 2.3.2 and denote the mean

by μY = EY1. Furthermore, assume that h is differentiable at μY and Y∗
1 , . . . , Y∗̃

n is generated using the

spectral-density-driven bootstrap procedure with an i.i.d. innovation process {ε∗t , t ∈ Z}, where E∗(ε∗t ) = 0,

E∗(ε∗t )2 = σ̂2
n , and E∗(ε∗t )4 < C < ∞. Then, as ñ → ∞,

d2(
√

ñ(h(Ȳ∗̃
n )− h(E∗Y∗)),√ñ(h(Ȳñ)− h(μY)) → 0, in probability.

An improved finite sample performance of bootstrap approximations is often achieved by ap-
plying the bootstrap to studentized statistics, see for instance Lahiri (2003, Chapter 6); Götze and
Künsch (1996); Romano and Wolf (2006). A studentized form is obtained by normalizing the statis-
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tic of interest with a consistent estimator of the asymptotic standard deviation. Since in Theo-
rem 2.3.2 the asymptotic variance is given by 2π f (0) and this quantity can be consistently esti-
mated, we get

√
n(X̄n − μ)/(2π f̃n(0))−1/2 as a studentized statistic where f̂n is a consistent es-

timator of f . A bootstrap approximation of this studentized statistic is then given by
√

n(X̄∗
n −

X̄n)/(2π f̃ ∗n (0))−1/2, where f̃ ∗n is the same spectral density estimator as f̃n obtained using the pseudo
observations X∗

1 , . . . , X∗
n.

Corollary 2.3.2. Let f (0) > 0 and f̃n(0), f̃ ∗n (0) be consistent estimators of f (0) which are bounded from

below by δ > 0. Under the assumption of Theorem 2.3.2 and if the spectral density estimator used for the

spectral-density-driven bootstrap is two times differentiable with a second derivative of bounded variation

independent from n, then, as n → ∞,

d2(
√

n(X̄∗
n − X̄n)/(2π f̃ ∗n (0))1/2,

√
n(X̄n − μ)/(2π f̃n(0))1/2) → 0, in probability.

The asymptotic variance of the generalized autocovariance statistic depends on the spectral den-
sity and it may also depend on the fourth moment κ4 of the underlying innovations of the linear
process. This fourth moment can be estimated consistently, by say κ̂4; see Fragkeskou and Papar-
oditis (2015). Since the pseudo time series {X∗

t } is driven by i.i.d. innovations, the fourth moment
of {ε∗t } can be estimated using the same estimator as for κ4. Consequently, an asymptotically valid
approximation of the spectral-density-driven bootstrap for studentized generalized autocovariance
statistics can be established. This is done in the following corollary, where, and in order to sim-
plify notation, only the case P = 1 is considered. In this case the statistic of interest is given by
T̂n = 1/n ∑n

t=1 ∑n−t
h=1−t d(h)(Xt − X̄n)(Xt+h − X̄n) and the asymptotic variance by

τ2 = (κ4/σ4 − 3)(
∫ 2π

0
f (λ) ∑

h∈Z
d(h) exp(ihλ)dλ)2 + 4π

∫ 2π

0
| f (λ) ∑

h∈Z
d(h) exp(ihλ)|2dλ.

Corollary 2.3.3. Let τ2 > δ > 0 and let f̃n, f̃ ∗n be consistent spectral density estimators which are bounded

from below by δ > 0. Furthermore, let κ̃4,n, κ̃∗4,n be consistent estimators of κ4. Under the assumptions of

Theorem 2.3.1 and if E∗(ε∗1)
8 < C independent from n then, as n → ∞,

d2(
√

n(T̂∗
n − E∗T̂∗

n )/τ̃∗
n ,
√

n(T̂n − ET̂n)/τ̃n) → 0, in probability.

The assumption τ2 > δ > 0 ensures that T̂n converges to a non-degenerate distribution. It is
fulfilled if κ4/σ4 > δ̃ > 1 or if f (·)∑h∈Z d(h) exp(ih·) is a non-constant function. The estimators
τ̃∗

n and τ̃n are estimators of τ based on f̃ ∗n and κ̃∗4,n and f̃n and κ̃4,n, respectively.

2.3 Spectral-Density-Driven Bootrstrap

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



30

2.4 Numerical Examples
2.4.1 Simulations
In this section we investigate by means of simulations the finite sample behavior of the spectral-
density-driven bootstrap and compare its performancewith that of two other linear bootstrapmeth-
ods, the AR-sieve bootstrap and the linear process bootstrap. We also compare all three linear boot-
strap methods with the tapered block bootstrap, cf. Paparoditis and Politis (2001), and the moving
block bootstrap, cf. Künsch (1989). Two statistics Tn are considered, the sample mean Xn and the
sample autocorrelation ρ̂(2) = γ̂(2)/γ̂(0). The time series used have been generated from the
following three models:

Model I: Xt = 0.9Xt−1 + εt,

Model II: Xt = 1.34Xt−1 − 1.88Xt−2 + 1.32Xt−3 − 0.8Xt−4 + εt + 0.71εt−1 + 0.25εt−2,

Model III: Xt = εt + ∑10
k=1 (

n
k)(−1)kεt−k.

In all cases the innovation process {εt} consists of i.i.d. random variables having a t-student dis-
tribution with 3 degrees of freedom and variance normalized to 1. Model I is tailor made for the
AR-sieve bootstrap. The spectral density in Model II has strong peak around frequency λ = 1.5

which can be estimated difficulty. Furthermore, this model possesses a slowly decaying autocovari-
ance function which oscillates with two frequencies; one for the odd lags and one for the even lags.
Model III is an moving average process with a unit root; the spectral density is zero at frequency
zero. Consequently, the sample mean converges to a degenerated distributionmaking a studentiza-
tion inappropriate. In order to investigate the finite sample performance of the different bootstrap
methods, empirical coverage probabilities of two-sided confidence intervals obtained for the levels
α = 0.2, 0.1 and 0.05 are presented. The empirical coverage probabilities are based on 2, 000 real-
izations of each process and B = 1, 000 bootstrap repetitions. Here, we present the results for the
case n = 128, while results for the case n = 512 are given in section 2.9.
For the AR-sieve bootstrap, denoted by ARS, the Akaike’s information criterion (AIC) is used to
select the autoregressive order p, cf. Akaike (1969). The SDDB is applied using an AR-pre-whitening,
nonparametric estimator of the spectral density, where the order of the autoregressive part has been
selected by the AIC and a smoothed periodogram is used with Gaussian kernel and of bandwidth
selected by cross-validation; see Beltrão and Bloomfield (1987). Furthermore, for this bootstrap
procedure, i.i.d. Gaussian innovations are used. Furthermore, the linear process bootstrap, denoted
by LPB, has been implemented as in McMurry and Politis (2010), and the tapered block bootstrap,
denoted byTBB, has been appliedwith a block length choice and a taperingwindow as in Paparoditis
and Politis (2001). Due to the strong dependence of some of the models considered, this rule for
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choosing the block length leads to unfeasible results especially for small sample sizes. For instance,
even for n = 512 this rule delivers for Model II block lengths of around 400. For this reason, we
also consider the moving block bootstrap with nonrandom block length given by l = n1/3. This
procedure is denoted by BB.

As mentioned in section 2.3.3, a better finite sample performance may be obtained by using boot-
strap approximations of studentized statistics. Thus, we consider for the sample mean the statistic
X̄n(2π f̂n(0))−1/2, where f̂n is the same spectral density estimator as the one used for SDDB. The
sample autocorrelation is studentized as well, where the variance is estimated by Bartlett’s formula,
Brockwell and Davis (1991, Theorem 7.2.1), based on the autocorrelation function corresponding to
the estimated spectral density f̂n. Finally, a standard normal distribution is considered as a further
competitor for the studentized statistics and is denoted in the following byND. For non-studentized
statistics a normal distribution is used with the variance estimated by using the SDDB procedure.
Studentization brings clear improvements for all models and all statistics considered. Hence, the
focus is on the studentized case and the non-studentized tables can be found in the section 2.9.

The coverage probabilities for the studentized samplemean are displayed in Table 2.1. As it is seen
from Table 2.1, none of the competitors outperforms the SDDB procedure. In fact, in many cases
the SDDB performs best. Finally, and for Model III it seems that only the SDDB procedure gives
reasonable estimates. Notice that the spectral density of Model III is not bounded away from zero,
that is, it is not clear whether the LPB or the ARS are valid in this case. The coverage probabilities
for the studentized sample autocorrelation are displayed in Table 2.2. For this statistic over all, the
most accurate coverage probabilities are those obtained by using the ARS and the SDDB procedures.

Notice that block bootstrap methods have their strength in their general applicability, i.e., they
are applicable not only to linear processes, like those considered in the simulation study, and to a
broad class of statistics. Consequently, it is not surprising that these methods do not perform best
for the linear processes considered.

Summarizing our numerical findings, it seems that the spectral-density-driven bootstrap per-
forms very good in all model situations and for both statistics considered. In combination with
a flexible spectral density estimator, like for instance the pre-whitening based estimator used in
the simulations, the spectral-density-driven bootstrap seems to be a valuable tool for bootstrapping
time series.

2.4.2 A Real-Life Data Example
We consider the time series of annual measurements of the water level, in feet, of Lake Huron;
cf. Series A in the Appendix of Brockwell and Davis (1991) or in the R-package datasets::LakeHuron,
R Core Team (2016). Figure 2.1 shows the results of the following five spectral density estimators
applied to this time series: An AR-pre-whitened, nonparametric estimator of the spectral density,
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Table 2.1: Coverage probabilities (in percent) for the mean using the studentized statistic of X̄n(2π f̂n)−1/2

and for a sample size n = 128

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 78.0 87.1 92.2 78.1 88.7 94.3 80.2 90.0 94.8
LPB 76.0 85.5 90.8 78.2 88.1 92.0 35.1 48.1 61.8
TBB 66.9 77.0 83.0 39.4 46.9 52.2 49.1 56.1 62.7
ND 67.8 78.2 84.6 64.1 76.4 84.2 24.2 32.4 40.0
ARS 76.6 85.9 91.1 74.2 85.5 92.3 39.5 51.8 62.4
BB 28.4 41.0 49.6 30.4 41.2 50.8 34.7 41.6 47.3

Table 2.2: Coverage probabilities (in percent) for the lag 2 autocorrelation using the studentized empirical
autocorrelation at lag 2 and for a sample size n = 128

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 82.5 91.5 96.0 79.4 89.3 93.5 81.0 90.3 95.3
LPB 85.5 94.2 97.2 92.0 95.9 97.2 82.8 91.9 96.7
TBB 76.3 83.9 87.7 20.6 25.1 27.6 65.4 72.6 77.2
ND 75.8 87.3 92.3 73.4 84.4 90.0 79.4 88.7 94.0
ARS 81.8 91.3 95.9 80.8 88.9 93.2 82.0 91.4 95.7
BB 32.6 45.0 57.0 21.4 31.2 42.8 27.9 40.0 52.2

denoted by Pre-Whitening, where the order of the autoregressive part has been selected by AIC and
the truncation lag by cross-validation; a nonparametric spectral density estimator using cepstrum
thresholding, denoted by Cepstrum, see Stoica and Sandgren (2006); a lag window estimator with a
trapezoid kernel and the truncation rule as in Politis (2003), denoted by Trapezoid and an autore-
gressive parametric approach, where the order of the autoregressive part has been selected by AIC.
Although, all estimators have a more or less similar overall behavior, they are different with the
autoregressive based approaches possessing a stronger peak at frequency zero than the other. We
next discuss the impact of these different estimators on the spectral-density-driven bootstrap. As
mentioned in section 2.3.1, the spectral-density-driven bootstrap can be either used with the mov-
ing average or with the autoregressive representation of the process corresponding to the spectral
density estimator applied. Table 2.3 shows for each estimator the obtained MA-coefficients and
AR-coefficients, respectively. As it is seen, depending on the spectral density estimator used, the
moving average or the autoregressive representation describes the structure of the process more
effectively, i.e., less non-zero coefficients are needed. Clearly, the differences between the spectral
density estimators used manifest themselves in the moving average or the autoregressive coeffi-
cients obtained. Notice that the oscillation of the Trapezoid spectral density estimator can be also

2 Spectral-Density-Driven Bootstrap
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Table 2.3: The moving average (ck,n) and autoregressive (bk,n) coefficients , k = 2, . . . , 11 for the different spec-
tral density estimates shown in Figure 2.1

ck,n 2 3 4 5 6 7 8 9 10 11
autoregressive 1.05 0.84 0.61 0.42 0.28 0.18 0.12 0.07 0.05 0.03
Pre-Whitening 1.07 0.85 0.61 0.42 0.28 0.18 0.12 0.07 0.05 0.03
Cepstrum 0.93 0.43 0.14 0.03 0.01 0 0 0 0 0
Trapezoid 0.33 0.23 0.16 0.12 0.11 0.09 0.08 0.09 0.12 0.09
bk,n 2 3 4 5 6 7 8 9 10 11
autoregressive 1.05 -0.27 0 0 0 0 0 0 0 0
Pre-Whitening 1.07 -0.29 0.01 0 0 0 0 0 0 0
Cepstrum 0.93 -0.43 0.14 -0.03 0.01 0 0 0 0 0
Trapezoid 0.33 0.12 0.05 0.03 0.03 0.02 0.02 0.03 0.05 0.01

seen in the behavior of the moving average coefficients and that this estimator implicitly fits an
moving average model to the time series at hand.
As this example demonstrates, the broad literature to spectral density estimation offers a vari-
ety of techniques to estimate this function. Therefore, the model used to generate the bootstrap
pseudo observations depends on the spectral density estimator used and which is preferred by the
practitioner. The resulting moving average or autoregressive representation can then be applied to
generate pseudo observations in order to bootstrap some statistic of interest.
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Figure 2.1: Different spectral density estimates for the Lake Huron data

2.4 Numerical Examples
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2.5 Conclusions
In this work a spectral density factorization has been used to obtain consistent estimates of the
entire sequence of moving average coefficients of the Wold representation of a stationary nonde-
terministic process. A bootstrap procedure then has been proposed which uses the estimated se-
quence of moving average coefficients together with a sequence of pseudo innovations to generate
new pseudo time series. Apart for the choice of the pseudo innovations, this bootstrap procedure
is completely driven and controlled by the spectral density estimator used. For i.i.d. pseudo inno-
vations the new bootstrap method generalizes existing linear bootstrap methods, like for instance,
the AR-sieve bootstrap. The latter is a special case of the spectral-density-driven bootstrap, which is
obtained if an autoregressive spectral density estimator is used. We established asymptotic validity
of the proposed bootstrap method driven by i.i.d. pseudo innovations for linear processes and for
interesting classes of statistics. The good finite sample behavior of the new bootstrap method has
been demonstrated by means of simulations.
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2.6 Proofs
Proof of Theorem 2.2.1. a) Since f̂n is a uniformly consistent estimator, it follows that some function
g, with g(n) → ∞ as n → ∞, exists such that

sup
λ∈[−π,π]

| f̂n(λ)− f (λ)| = oP(1) = OP

(
g(n)−1

)
.

Consequently, we have that for all ε > 0, there exists a Ω0 ∈ A with P(Ω0) ≥ 1 − ε and a n0 ∈
N, such that for all ω ∈ Ω0 a constant C > 1 exits, such that for all n ≥ n0 it holds true that
supλ∈[−π,π] | f̂n(λ) − f (λ)| ≤ Cg(n)−1. Since log f and log f̂n are integrable, and the set {λ ∈
[−π, π) : f (λ) = 0 or f̂n(λ) = 0} =: BC

0 is a null set, we have

âk,n =
1

2π

∫ π

−π
log( f̂n(λ)) exp(−ikλ)dλ =

∫ π

−π

(
log( f̂n(λ)) + log f (λ)− log f (λ)

)
exp(−ikλ)

dλ

2π

=ak +
∫ π

−π

[
log( f̂nλ)− log f (λ)

]
exp(−ikλ)

dλ

2π
= ak +

∫
B0

[
log( f̂nλ)− log f (λ)

]
exp(−ikλ)

dλ

2π
.

We get further

2π sup
k∈N

|âk,n − ak| = sup
k∈N

∣∣∣∣∫B0

(
log( f̂n(λ))− log f (λ)

)
exp(−ikλ)dλ

∣∣∣∣ ≤ ∫B0

| log( f̂n(λ))− log( f (λ))|dλ

=
∫

B0

1{ f̂n(λ)> f (λ)}(λ) log
(

f̂n(λ)/ f (λ)
)

dλ +
∫

B0

1{ f (λ)> f̂n(λ)}(λ) log
(

f (λ)/ f̂n(λ)
)

dλ.

Let ω ∈ Ω0 and consider the case f̂n(λ) > f (λ) > 0. Then we have f̂n(λ) ≤ Cg(n)−1 + f (λ).
Consequently,

∫
B0

1{ f̂n(λ)> f (λ)>0}(λ) log
(

f̂n(λ)/ f (λ)
)

dλ ≤
∫

B0∪{ f̂n> f }
log
(

C/g(n) + f (λ)
f (λ)

)
dλ

=
∫

B0∪{ f̂n> f }
log (C/(g(n) f (λ)) + 1) dλ. =

∫
B0∪{ f̂n> f }

log( f (λ) + C/g(n))− log( f λ)dλ.

Assume g(n) > 1. Then it holds true for all n ∈ N and all λ ∈ B0 that

| log
(

C(g(n) f (λ))−1 + 1
)
| ≤ | log (C/ f (λ) + 1) | = log

(
C + f (λ)

f (λ)

)
= | log(C + f (λ))− log( f (λ))| ≤ | log(C + f (λ))|+ | log( f (λ))|.

Since log f is integrable, log(C + f (·)) is integrable as well, and consequently, the dominated con-
vergence theorem can be applied. We get

lim
n→∞

∫
B0∪{ f̂n> f }

log( f (λ) + C/g(n))− log f (λ)dλ = 0.

2.6 Proofs
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Analogously, it can be shown that limn→∞
∫

B0∪{ f̂n< f } log
(

f (λ)/ f̂n(λ)
)

dλ = 0. Thus, we have for
all ω ∈ Ω0 that supk∈N |1/(2π)

∫ π
−π log( f̂n(λ)) − log f (λ) exp(−ikλ)dλ| → 0 as n → ∞. This

proves assertion a). For b) and c) fix a k ∈ N and observe that ĉk,n is a continuous transformation of
a finite number of âk,n’s. Thus, supk∈N |âk,n − ak| = oP(1) ensures, that ĉk,n

P→ ck as n → ∞. The
same arguments apply to b̂k,n.

Before proving Theorem 2.2.2, we notice the following useful lemma.

Lemma 2.6.1. Let the condition of part b) of Theorem 2.2.2 be satisfied. Then it holds true that

a)

sup
λ∈[−π,π]

| f 1/2(λ)− f̂n
1/2

(λ)| = oP(1),

b)

sup
λ∈[−π,π]

| log ( f (λ))− log( f̂n(λ))| = oP(1),

c)

sup
λ∈[−π,π]

∣∣∣∣ d
dλ

log( f (λ))− d
dλ

log
(

f̂n(λ)
)∣∣∣∣ = oP(1).

Proof. Since (2.2) ensures that f and f̂n are bounded away from zero, a) and b) follow immediately
from the mean value theorem. To see why the third assertion is true, one considers the following
bound

sup
λ∈[−π,π]

∣∣∣∣ d
dλ

log ( f (λ))− d
dλ

log
(

f̂n(λ)
)∣∣∣∣

≤ sup
λ∈[−π,π]

∣∣∣∣ d
dλ

f (λ)− d
dλ

f̂n(λ)

∣∣∣∣ / f (λ) + sup
λ∈[−π,π]

d
dλ

f (λ)
| f̂n(λ)− f (λ)|

f (λ) f̂n(λ)
.

Since f and f̂n are bounded away from zero and d
dλ f is finite, c) follows from (2.8) and (2.9).

Proof of Theorem 2.2.2. Since (ak) and (âk,n) are the Fourier coefficients of log f and log f̂n respec-
tively, we have

∫ 2π

0
| log f (λ)− log f̂n(λ)|2dλ =

∫ 2π

0
|

∞

∑
k=−∞

(ak − âk,n) exp(ikλ)|2dλ,

and consequently (2.2.11) follows from Parseval’s identity. (2.2.13) follows by the same argument.
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Using Jensen’s inequality and since ∑∞
k=1 k−2 = π2/6, we get

∞

∑
k=1

|ak − âk,n| = π2

6

(
6

π2

∞

∑
k=1

|ak − âk,n|k2

k2

)2/2

≤ π2

6

(
6

π2

∞

∑
k=1

|ak − âk,n|2k4

k2

)1/2

≤ π√
12

(
∞

∑
k=−∞

|ak − âk,n|2k2

)1/2

≤ √
π/24

(∫ 2π

0
| d
dλ

log f (λ)− d
dλ

log f̂n(λ)|2dλ

)1/2

.

Lemma 2.6.1 implies then, that the above bound converges to zero in probability as n → ∞. Let
sgn(k) = 1{k>0} − 1{k<0}. Since Lemma A.2 (or see Pourahmadi (1984)) ensures that for all λ ∈
[0, 2π] it holds true that σ/

√
2π ∑∞

k=0 ck exp(ikλ) = exp(a0/2 + ∑∞
k=1 ak exp(ikλ)) and similarly

for {ĉk,n} with ak replaced by âk,n, we get by Parseval’s identity, the fact that cos(x) ≥ 1 − 0.5x2 for
all x ∈ R and

∫ 2π
0 sin(kλ) sin(lλ)dλ = π1{k=l} for all k, l ∈ N, that

∞

∑
k=0

|σck − σ̂nĉk,n|2 =
∫ 2π

0

∣∣∣∣∣ ∞

∑
k=0

(σck − σ̂nĉk,n) exp(ikλ)

∣∣∣∣∣
2

dλ/(2π)

=
∫ 2π

0

∣∣∣∣∣exp[a0/2 +
∞

∑
k=1

ak exp(ikλ)]− exp[a0,n/2 +
∞

∑
k=1

âk,n exp(ikλ)]

∣∣∣∣∣
2

dλ

=
∫ 2π

0

∣∣∣∣∣exp

[
1/2

∞

∑
k=−∞

ak exp(ikλ) + 1/2
∞

∑
k=−∞

sgn(k)ak exp(ikλ)

]

− exp

[
1/2

∞

∑
k=−∞

âk,n exp(ikλ) + 1/2
∞

∑
k=−∞

sgn(k)âk,n exp(ikλ)

]∣∣∣∣∣
2

dλ

=
∫ 2π

0

∣∣∣∣∣ f 1/2(λ) exp

[
i

∞

∑
k=1

ak sin(kλ)

]
− f̂n

1/2
(λ) exp

[
i

∞

∑
k=1

âk,n sin(kλ)

]∣∣∣∣∣
2

dλ

=
∫ 2π

0

∣∣∣∣∣exp

[
i

∞

∑
k=1

âk,n sin(kλ)

]∣∣∣∣∣
2 ∣∣∣∣∣ f 1/2(λ) exp

[
i

∞

∑
k=1

(ak − âk,n) sin(kλ)

]
− f̂n

1/2
(λ)

∣∣∣∣∣
2

dλ

=
∫ 2π

0

(
f (λ) + f̂n(λ)− 2 f 1/2(λ) f̂n

1/2
(λ) cos

[
∞

∑
k=1

(ak − âk,n) sin(kλ)

])
dλ

≤
∫ 2π

0

(
f 1/2(λ)− f̂n

1/2
(λ)
)2

dλ +
∫ 2π

0
( f (λ) f̂n(λ))

1/2

∣∣∣∣∣ ∞

∑
k=1

(ak − âk,n) sin(kλ)

∣∣∣∣∣
2

dλ

≤
∫ 2π

0

(
f 1/2(λ)− f̂n

1/2
(λ)
)2

dλ + sup
λ∈[0,2π]

( f (λ) f̂n(λ))
1/2
∫ 2π

0
(log f (λ)− log f̂n(λ))

2dλ = oP(1)

where the last equation follows by (2.2.11) and Assumption 2. Assertion (2.2.12) follows since
σ̂n

P→ σ and

∞

∑
k=0

|ck − ĉk,n|2 ≤ 2/σ
∞

∑
k=0

|σck − σ̂nĉk,n|2 + 2/σ
∞

∑
k=0

|ĉk,n|2|σ̂n − σ|2 = oP(1).
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By Jensen’s inequality, we have

∞

∑
k=1

|σck − σ̂nĉk,n| ≤ π2

6

(
6

π2

∞

∑
k=1

|σck − σ̂nĉk,n|2k2

)1/2

=
π2

6

⎛⎝ 6
π2

∫ 2π

0

∣∣∣∣∣ ∞

∑
k=0

(σck − σ̂nĉk,n)k exp(ikλ)

∣∣∣∣∣
2

dλ/(2π)

⎞⎠1/2

=
π√

6

⎛⎝∫ 2π

0

∣∣∣∣∣ d
dλ

∞

∑
k=0

(σck − σ̂nĉk,n) exp(ikλ)

∣∣∣∣∣
2

dλ

⎞⎠1/2

=
π√

6

⎛⎝∫ 2π

0

∣∣∣∣∣ d
dλ

(
exp

[
a0

2
+

∞

∑
k=1

ak exp(ikλ)

]
− exp

[
â0,n

2
+

∞

∑
k=1

âk,n exp(ikλ)

])∣∣∣∣∣
2

dλ

⎞⎠1/2

=
π2

6

(
6

π2

∫ 2π

0

∣∣∣∣∣ d
dλ

(
exp[a0/2 +

∞

∑
k=1

ak exp(ikλ)] ×
[

1 − exp[a0,n/2 − ak/2 +
∞

∑
k=1

(âk,n − ak) exp(ikλ)]

])∣∣∣∣∣
2

dλ

⎞⎠1/2

=
π√

6

(∫ 2π

0

∣∣∣∣∣exp

[
â0,n

2
+

∞

∑
k=1

(âk,n) exp(ikλ)

]
∞

∑
k=1

(âk,n − ak)(ki) exp(ikλ)−

∞

∑
k=1

(ki)ak exp(ikλ)

(
exp

[
a0

2
+

∞

∑
k=1

ak exp(ikλ)

]
− exp

[
â0,n

2
+

∞

∑
k=1

(âk,n) exp(ikλ)

])∣∣∣∣∣
2

dλ

⎞⎠1/2

.

The term on the right hand side of the last equation can be bounded by

π√
3

⎛⎝∫ 2π

0

⎡⎣ f̂n(λ)

∣∣∣∣∣ ∞

∑
k=1

(âk,n − ak)(ki) exp(ikλ)

∣∣∣∣∣
2

+

∣∣∣∣∣ ∞

∑
k=1

(ki)ak exp(ikλ)

∣∣∣∣∣
2

×
∣∣∣∣∣exp

[
a0/2 +

∞

∑
k=1

ak exp(ikλ)

]
− exp

[
a0,n/2 +

∞

∑
k=1

(âk,n) exp(ikλ)

]∣∣∣∣∣
2
⎤⎦dλ

⎞⎠1/2

.

Furthermore, the second part of the last term can be bounded analogously as in the case for

(2.2.12) and because of Assumption 2, we get
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∞

∑
k=1

|σck − σ̂nĉk,n| ≤ Cπ√
3

sup
λ∈[0,2π]

∣∣∣∣∣ ∞

∑
k=1

akk exp(ikλ)

∣∣∣∣∣
(

1
4

∫ 2π

0

∣∣∣∣ d
dλ

log f (λ)− d
dλ

log f̂n(λ)

∣∣∣∣2 dλ

+
∞

∑
k=1

(âk,n − ak)
2k2
∫ 2π

0

∣∣∣ f 1/2(λ)− f̂n
1/2

(λ)
∣∣∣2 dλ

)1/2

=

(
OP(1)

∫ 2π

0

∣∣∣∣ d
dλ

log f (λ)− d
dλ

log f̂n(λ)

∣∣∣∣2 dλ +OP(1)
∫ 2π

0

∣∣∣ f 1/2(λ)− f̂n
1/2

(λ)
∣∣∣2 dλ

)1/2

.

The convergence to zero in probability, as n → ∞, of the term on the right hand side of the last
equality follows from (2.2.13) and the fact that σ̂n

P→ σ.

Proof of Theorem 2.3.1. For simplicity, the proof is stated for centered X∗
t ’s and a single T̂n,p and in

order to simplify notation the subscript p is in the following omitted. Since g is a smooth function,
the delta-method can be applied to get the asymptotic normality of T̂∗

n . Consider the statistic

T∗
n =

1
n

n

∑
t=1

n−t

∑
h=1−t

d(h)X∗
t X∗

t+h.

We firstly show that, as n → ∞,
√

n(T∗M
n − E∗T∗M

n ) → N (0, σ2
M), in probability, where T∗M

n =

1
n ∑n

t=1 ∑M∧(n−t)
h=1−t d(h)X∗

t X∗
t+h. For this, we use a central limit theorem for triangular arrays of weakly

dependent random variables established by Neumann (2013). Let

√
n(T∗M

n − E∗T∗M
n ) =

n

∑
t=1

1√
n

M∧(n−t)

∑
h=1−t

d(h)(X∗
t X∗

t+h − ̂̂γn(h)) =
n

∑
t=1

Z∗
t,n,

with an obvious notation for Z∗
t,n and ̂̂γn(h) = 1/(2π)

∫ π
−π f̂n(λ) exp(−ihλ)dλ. For the mean of

Z∗
t,n, we have E∗Z∗

t,n = 0 for all t ∈ Z. Furthermore, since {X∗
t , t ∈ Z} is a linear process, its strictly

stationarity can be used to show that

n

∑
t=1

E∗(Z∗
t,n)

2 =
n

∑
t=1

1
n

M∧(n−t)

∑
h1=1−t

d(h1)
M∧(n−t)

∑
h2=1−t

d(h2)E∗
[ (

(X∗
t )

2X∗
t+h1

X∗
t+h2

− ̂̂γn(h1)̂̂γn(h2)
) ]

≤
n

∑
t=1

1
n

M∧(n−t)

∑
h1=1−t

|d(h1)|
M∧(n−t)

∑
h2=1−t

|d(h2)|E∗
(

2(X∗
t )

4 + 4(X∗
t+h1

)4 + 4(X∗
t+h2

)4 + ̂̂γn(h1)̂̂γn(h2)
)

=
n

∑
t=1

1
n

M∧(n−t)

∑
h1=1−t

|d(h1)|
M∧(n−t)

∑
h2=1−t

|d(h2)|
(

10E∗(X∗
1 )

4 + ̂̂γn(h1)̂̂γn(h2)
)

≤ (E∗(X∗
1 )

4 + ̂̂γn(0)
2)(∑

h∈Z
|d(h)|)2 ≤ C < ∞,

where C is independent of n, since κ̂4,n and ̂̂γn are uniformly bounded and so is E∗(X∗
1 )

4.
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Consider the weak dependence structure of Z∗
t,n. For this, let u ∈ N and consider time points

1 < s1 < · · · < su < su + r = t1 ≤ t2 ≤ n, a square integrable and measurable function
f : Ru → R and a bounded and measurable function f̃ : Ru → R. Without loss of generality, we
assume, that r > M. Then, we have

|√nCov( f (Z∗
s1,n, . . . , Z∗

su,n), Z∗
t1,n)| =

∣∣∣∣∣Cov
(

f (Z∗
s1,n, . . . , Z∗

su,n),
M∧(n−(su+r))

∑
h=1−su−r

d(h)(X∗
su+rX∗

su+r+h)

)∣∣∣∣∣
=

∣∣∣∣∣Cov
(

f (Z∗
s1,n, . . . , Z∗

su,n),
M∧(n−(su+r))

∑
h=1−su−r

d(h)
∞

∑
j=0

ĉj,n

∞

∑
l=0

ĉl,nε∗su+r−jε
∗
su+r+h−l

)∣∣∣∣∣ .
Since {X∗

t } is an one-sided linear process, we have f (Z∗
s1,n, . . . , Z∗

su,n) =

f (g(ε∗su+M, ε∗su+M−1, . . . )) for some measurable function g. Consequently, by the independence of
the ε∗t ’s and applying Cauchy-Schwarz’s inequality, it follows for the last expression above that it can
be bounded by

n−1/2
M∧(n−(su+r))

∑
h=1−su−r

|d(h)|
∞

∑
j=r−M

|ĉj,n|
∞

∑
l=r+h−M

|ĉl,n|(E∗ f 2(Z∗
s1,n, . . . , Z∗

su,n))
1/2
[

E∗(ε∗su+r−jε
∗
su+r+h−l)

2
]1/2

≤(E∗ f 2(Z∗
s1,n, . . . , Z∗

su,n))
1/2 1√

n ∑
h∈Z

|d(h)|
∞

∑
l=0

|ĉl,n|max(κ̂4,n, 1)
∞

∑
j=r−M

|ĉj,n|

≤(E∗ f 2(Z∗
s1,n, . . . , Z∗

su,n))
1/2 1√

n
C

∞

∑
j=r−M

|ĉj,n|,

where C < ∞ is independent of n since κ̂4,n and ∑∞
j=0 ĉj,n are uniformly bounded. We have

|Cov( f̃ (Z∗
s1,n, . . . , Z∗

su,n), Z∗
t1,nZ∗

t2,n)| =

=

∣∣∣∣∣M∧(n−(su+r))

∑
h=1−su−r

d(h)
∞

∑
j=r−M

ĉj,n

∞

∑
l=r+h−M

ĉl,nCov( f̃ (Z∗
s1,n, . . . , Z∗

su,n),
1√
n

ε∗su+r−jε
∗
su+r+h−lZ

∗
t2,n)

∣∣∣∣∣
≤

M∧(n−(su+r))

∑
h=1−su−r

|d(h)|
∞

∑
j=r−M

|ĉj,n|
∞

∑
l=r+h−M

|ĉl,n|2‖ f̃ ‖∞E∗(
1√
n
|ε∗su+r−jε

∗
su+r+h−lZ

∗
t2,n|)

≤
M∧(n−(su+r))

∑
h=1−su−r

|d(h)|
∞

∑
j=r−M

|ĉj,n|
∞

∑
l=r+h−M

|ĉl,n|‖ f̃ ‖∞
2
n

E∗
[(

ε∗su+r−jε
∗
su+r+h−l

)2
+ (Z∗

t2,n)
2
]

≤ ‖ f̃ ‖∞
2
n
(max(κ̂4,n, σ̂2

n) + E∗(Z∗
t2,n)

2) ∑
h∈Z

|d(h)|
∞

∑
l=0

|ĉl,n|
∞

∑
j=r−M

|ĉj,n| ≤ ‖ f̃ ‖∞
C
n

∞

∑
j=r−M

|ĉj,n|.

Consequently, the sequence {Z∗
t,n} fulfills the weakly dependence condition of Neumann (2013), if

2C ∑∞
j=r−M |ĉj,n| ≤ θr for some summable (θr)r∈N. Since supλ∈(−π,π](

d
dλ )

3 log f̂n(λ) ≤ C holds in-
dependently of n, it follows similarly to LemmaA.3 that supj,n |ĉj,nj3| ≤ C. Hence, 2C ∑∞

j=r−M |ĉj,n| ≤
∑∞

j=r−M Cj−3 =: θr for all r > M and for some C > 0. If r ≤ M we set θr := C. Then it holds
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∑∞
r=0 θr = C(M + 1 + ∑∞

r=M+1 ∑∞
j=r−M j−3) = C(M + 1 + ∑∞

j=1 j−2) < ∞. Regarding the variance
of T∗M

n , consider firstly T∗M
n = 1/

√
n ∑M

h=−n+1 ∑n∧(n−h)
t=1∨(1−h) d(h)X∗

t X∗
t+h. Using the linear process

structure of {X∗
t } and additionally, let cj = 0 for all j < 0, we get

Var(T∗M
n ) =

M

∑
h1,h2=−n+1

1/n
n∧(n−h1)

∑
t=1∨(1−h1)

d(h1)
n∧(n−h2)

∑
s=1∨(1−h2)

d(h2)
(

E∗(X∗
t X∗

t+h1
X∗

s X∗
s+h2

)− ̂̂γn(h1)̂̂γn(h2)
)

=
M

∑
h1,h2=−n+1

1/n
n∧(n−h1)

∑
t=1∨(1−h1)

d(h1)
n∧(n−h2)

∑
s=1∨(1−h2)

d(h2)
( ∞

∑
j=0

ĉj,nĉj+h1,nĉj+s−t,nĉj+s+h2−t,n(κ̂4,n − 3)

+ ̂̂γn(s − t)̂̂γn(s − t + h2 − h1) + ̂̂γn(s + h2 − t)̂̂γn(s − t − h1)
)

=
1
n

M

∑
h1=1

M

∑
h2=1

∑
k∈Z

d(h1)d(h2)
( ∞

∑
j=0

ĉj,nĉj+h1,nĉj+k,nĉj+k+h2,n(κ̂4,n − 3)

+ ̂̂γn(k)̂̂γn(k + h2 − h1) + ̂̂γn(k + h2)̂̂γn(k − h1)
) n∧(n−h1)

∑
t=1∨(1−h1)

n∧(n−h2)

∑
s=1∨(1−h2)

1{k=s−t}

=
M

∑
h1,h2=−n+1

n−1

∑
k=−(n−1)

d(h1)d(h2)
( ∞

∑
j=0

ĉj,nĉj+h1,nĉj+k,nĉj+k+h2,n(κ̂4,n − 3)

+ ̂̂γn(k)̂̂γn(k + h1 − h2) + ̂̂γn(k + h2)̂̂γn(k − h1)
)max(0, n − (|k|+ |h1 − h2|))

n
.

Since κ̂4,n is a consistent estimator of κ4 and ∑∞
j=0 |cj − ĉj,n| = oP(1) from which it follows that

∑k∈Z ̂̂γn(k)̂̂γn(k + x) = ∑k∈Z γ(k)γ(k + x) + oP(1), we have that the last term is equal to

M

∑
h1=−n+1

M

∑
h2=−n+1

n−1

∑
k=−(n−1)

d(h1)d(h2)
( ∞

∑
j=0

cjcj+h1 cj+kcj+k+h2(κ4 − 3)

+ γ(k)γ(k + h1 − h2) + γ(k + h2)γ(k − h1)
)max(0, n − (|k|+ |h1 − h2|))

n
+ oP(1).

We then have for the first term of the last equality above, that it equals, as n → ∞, to

M

∑
h1=−n+1

M

∑
h2=−n+1

d(h1)d(h2)
( ∞

∑
j=0

cjcj+h1 ∑
k∈Z

cj+k+h1−h2 cj+k+h1(κ4 − 3)

+ ∑
k∈Z

γ(k + h1 − h2)γ(k) + γ(k + h1)γ(k − h2)
)

=
M

∑
h1,h2=−n+1

d(h1)d(h2)
(

γ(h1)γ(−h2)(κ4/σ4 − 3) + ∑
k∈Z

γ(k + h1 − h2)γ(k) + γ(k + h1)γ(k − h2)
)

.

Since ∑∞
j=0 |jcj| < ∞ and ∑k∈Z |kγ(k)| < ∞, the second term of the same equality is of order

O(1/n). Hence, we have in probability, as n → ∞,

Var(T∗M
n ) →

M

∑
h1,h2=−∞

d(h1)d(h2)
(

γ(h1)γ(−h2)
( κ4

σ4 − 3
)
+∑

k∈Z
γ(k+ h1 − h2)γ(k)+γ(k+ h1)γ(k− h2)

)
.
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Using the strictly stationarity of the process (X∗
t ) and since ∑k∈Z |d(h)| < ∞ and E(X∗

t )
4 < ∞, we

can verify Lindberg’s condition by means of Lebesgue’s dominated convergence theorem, that is

∣∣∣∣1/n
n

∑
t=1

M∧(n−t)

∑
h1,h2=1−t

d(h1)d(h2)E∗
(
(X∗

t
2X∗

t+h1
X∗

t+h2
− ̂̂γn(h1)̂̂γn(h2))1{|∑

M∧(n−t)
h3=1−t d(h3)(X∗

t X∗
t+h3

−̂̂γn(h3))|>
√

nε}

) ∣∣∣∣
≤ 1

n

n

∑
t=1

∑
h1,h2∈Z

|d(h1)d(h2)|E∗
(
(|(X∗

t )
2X∗

t+h1
X∗

t+h2
|+ |̂̂γn(h1)̂̂γn(h2)|)1{∑h3∈Z |d(h3)|(|X∗

t X∗
t+h3

|+|̂̂γn(h3)|)>
√

nε}

)
= ∑

h1,h2∈Z
|d(h1)d(h2)|E∗

(
(|(X∗

1 )
2X∗

1+h1
X∗

1+h2
|+ |̂̂γn(h1)̂̂γn(h2)|)1{∑h3∈Z |d(h3)|(|X∗

1 X∗
1+h3

|+|̂̂γn(h3)|)>
√

nε}

)
→ 0, as n → ∞.

Therefore, by the central limit theorem for triangular arrays of weakly dependent random variables
given in Neumann (2013), we have that, as n → ∞,

√
n(T∗M

n − E∗T∗M
n ) → N (0, σ2

M), in probability.
Now, using a version in probability of Theorem 4.2 of Billingsley (1968) the proof of the theorem is
concluded, since additionally to the converges for any fixed M, we have

lim
M→∞

σ2
M =

∞

∑
h1,h2=−∞

d(h1)d(h2)
(

γ(h1)γ(−h2)(
κ4

σ4 − 3)+ ∑
k∈Z

γ(k+ h1 − h2)γ(k)+γ(k+ h1)γ(k− h2)
)

.

Finally, condition (3) of Theorem 4.2 of Billingsley (1968) holds in probability since by Tchebysheff ’s
inequality we have

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣ 1√
n

n

∑
t=1

M∧(n−t)

∑
h=1−t

d(h)
(

X∗
t X∗

t+h − ̂̂γn(h)
)
− 1√

n

n

∑
t=1

(n−t)

∑
h=1−t

d(h)
(

X∗
t X∗

t+h − ̂̂γn(h)
)∣∣∣∣∣ > ε

)

= lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣ n

∑
t=1

n−t

∑
h=M+1

d(h)
(

X∗
t X∗

t+h − ̂̂γn(h)
)∣∣∣∣∣ > √

nε

)

≤ lim
M→∞

lim sup
n→∞

Var
(

1√
n

n

∑
t=1

n−t

∑
h=M+1

d(h)
(
X∗

t X∗
t+h
))

/(ε2)

= lim
M→∞

lim sup
n→∞

Var
(

n

∑
h=M+1

d(h)
n−h

∑
t=1

(
X∗

t X∗
t+h
))

/(nε2),

together with similar calculations as in the evaluation of Var(T∗M
n ) and ∑ k ∈ Z|γ(k)| < ∞ we get

limM→∞ ∑∞
h1,h2=M+1 d(h1)d(h2)OP(1) = 0, by the fact that ∑h∈Z |d(h)| < ∞. Using this summabil-

ity property and the same arguments as in the calculation of Var(T∗M
n ) leads to, as n → ∞ and in

probability,

Var(T∗
n ) →

∞

∑
h1,h2=−∞

d(h1)d(h2)
(

γ(h1)γ(−h2)(
κ4

σ4 − 3)+ ∑
k∈Z

γ(k+ h1 − h2)γ(k)+γ(k+ h1)γ(k− h2)
)
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which can be written in frequency domain as

(κ4/σ4 − 3)(
∫ 2π

0
f (λ) ∑

h∈Z
d(h) exp(ihλ)dλ)2 + 4π

∫ 2π

0
| f (λ) ∑

h∈Z
d(h) exp(ihλ)|2dλ.

Since the statistic in Definition 2.3.1 has for linear processes the same asymptotic distribution as
the one derived above, the assertion of the theorem follows by the triangular inequality.

Proof of Theorem 2.3.2. Without loss of generality, let X∗
t be centered. Since ∑h∈Z |γ(h)| < ∞, we

have supλ∈[−π,π] f (λ) < ∞. To proof Theorem2.3.2 we use a central limit theorem forM-dependent
sequences, see Romano and Wolf (2000) and a version in probability of Theorem 4.2 of Billingsley
(1968).
Fix M ∈ N and consider the M-dependent process X∗

t,n,M = ∑M
k=0 ĉk,nε∗t−k, t ∈ Z with spectral den-

sity f̂M(λ) = |∑M
k=0 ĉk,n exp(iλk)|2σ̂2

n/(2π) and autocovariance γ̂n,M(h) =
∫ π
−π f̂M(λ) exp(ihλ)dλ.

Applying a central limit theorem for M-dependent sequences we show, as n → ∞, that

n

∑
t=1

n−1/2X∗
t,n,M

D→ N (0, 2π fM(0)), in probability, where fM(0) = |
M

∑
k=0

ck|2σ2/(2π).

Theorem 2.2.1 gives for the variance, let n ≥ M,

n−1Var
(

n

∑
t=1

X∗
t,n,M

)
=

M

∑
h=−M

(1 − |h|/n)γ̂M(h) = (2π) f̂M(0) + OP(1/n) → 2π fM(0),

in probability, as n → ∞. If fM(0) = 0 the assertion follows. Assume that fM(0) > 0. Since {X∗
t,n,M}

is stationary, we have for k ≥ M and all a ∈ N

Var
(

a+k−1

∑
t=a

n−1/2X∗
t,n,M

)
=

1
n
Var
(

k

∑
t=1

X∗
t,n,M

)
= 2π f̂M(0)k/n + OP(1/n).

Furthermore, the process {X∗
t,n,M} has i.i.d. innovations with a finite fourth moment. Thus, the

fourth moment can easily be bounded; we have

E
(

n−1/2X∗
1,n,M

)4
=

(
E((ε∗1)

4 − 3σ̂4
n)

M

∑
k=0

ĉ4
k,n + 3γ̂M(0)2

)
n−2 = OP(1/n2).

Consequently, the conditions of Theorem 2.1 of Romano and Wolf (2000) can be easily verified
and it follows that ∑n

t=1 n−1/2X∗
t,n,M

D→ N (0, 2π fM(0)), in probability. Furthermore, the absolute
summability of γ(h) implies, as M → ∞, fM(0) → f (0). Since {ĉk,n} is absolutely summable, it can
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implies absolute summability of {̂
γ̂n(h) = E∗X∗

t+h,nX∗
t,n}. Let δ > 0,

lim
M→∞

lim sup
n→∞

P

(
|

n

∑
t=1

X∗
t,n,M −

n

∑
t=1

X∗
t,n| >

√
nδ

)
δ2 = lim

M→∞
lim sup

n→∞
δ2P

(
|

n

∑
t=1

1√
n

∞

∑
k=M+1

ĉk,nε∗t−k| > δ

)

≤ lim
M→∞

lim sup
n→∞

n−1

∑
h=−n+1

∞

∑
k=M+1

(1 − |h|/n)ĉk,nĉk+h,nσ̂2
n

= lim
M→∞

lim sup
n→∞

∞

∑
h=M+1

̂̂γn(h)−
n−1

∑
h=−n+1

|h|/n
∞

∑
k=M+1

ĉk,nĉk+h,nσ̂2
n − ∑

|h|≥n

∞

∑
k=M+1

ĉk,nĉk+h,nσ̂2
n

= lim
M→∞

∞

∑
h=M+1

γ(h) = 0,

where the last equation follows by the absolute summability of γ(h). Thus, the assertion follows
with a version in probability of Theorem 4.2 of Billingsley (1968).
Since f̂n is a uniformly consistent estimator and {̂̂γn} is absolutely summable, we have

Var
(

1√
n

n

∑
t=1

X∗
t,n

)
=

n−1

∑
h=−n+1

(1 − |h|/n) ̂̂γn(h) = f̂n(λ)− ∑
|h|≥n

̂̂γn(h)−
n−1

∑
h=−n+1

|h|/n̂̂γn(h)

= f (λ) + oP(1)− ∑
|h|≥n

̂̂γn(h)−
n−1

∑
h=−n+1

|h|/n̂̂γn(h)→ f (λ),

as n → ∞, in probability. The assertion follows by the triangular inequality.

Proof of Corollary 2.3.1. By applying the spectral-density-driven bootstrap to the time seriesY1, . . . , Yn,
validity of the spectral-density-driven bootstrap for this statistic can be derived using the delta-
method and similar arguments as those used the proof of Theorem 2.3.2.

Proof of Corollary 2.3.2. Since f̃n(0) is a consistent estimator, we havewith Slutsky’s Theorem
√

n(X̄n −
μ)/(2π f̃n(0))1/2 → N (0, 1). Furthermore, we have for 0 < εn < f (0), εn → 0, as n → ∞, that
E(n(X̄n − μ)2)/(2π f̃n(0)) → 1, since

E
[

n(X̄n − μ)2

2π( f (0) + f̃n(0)− f (0)
1{| f̃n(0)− f (0)|<εn} +

n(X̄n − μ)2

(2π f̃n(0)
1{| f̃n(0)− f (0)|≥εn}

]
≤ E

n(X̄n − μ)2

2π f (0) + εn
+ E

n(X̄n − μ)2

2πδ
E1{| f̃n(0)− f (0)|≥εn} → 1,

and En(X̄n − μ)2/{2π f̃n(0)} ≥ En(X̄n − μ)2/{2π f̃ (0) + εn}1{| f̃n(0)− f (0)|<εn} → 1, as n → ∞.

For a valid bootstrap approximation it is necessary that f̃ ∗n is a consistent estimator. The differen-
tiability of f̂n ensures that the corresponding autocovariance function fulfills |̂̂γn(h)| ≤ |h|−2+εC

for some ε > 0 and for all n ∈ N. Since {X∗
t , t ∈ Z} possesses a one-sided moving average repre-

sentation with i.i.d. innovations, we have with the absolute summability of {ĉk,n} and the bounded-

be shown that the M-approximation used is sufficiently close. The absolute summability of {ĉk,n}
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ness of fourth moment of the innovations that supt ∑h1,h2,h3∈Z cum
∗(X∗

t , X∗
t+h1

, X∗
t+h2

, X∗
t+h3

) < C.
Thus, similarly to Lemma A.2 in Jentsch and Subba Rao (2015) it can be shown that supλ | f̂n

∗
(λ)−

f (λ)|→0, in probability, where f̂n
∗ is a lag window spectral density estimator based on the pseudo

observations X∗
1 , . . . , X∗

n and fulfilling Assumption 2.1 of Jentsch and Subba Rao (2015). We con-
struct our consistent estimator as f̃ ∗n (0) = f̂n(0) + δ1{ f̂n(0)<δ}. Using Theorem 2.3.2 and the same
arguments as above we get

√
n(X̄∗

n − X̄n)/(2π f̃ ∗n (0))1/2 → N (0, 1), as n → ∞, in probability.
Furthermore, we have E∗n(X̄∗

n − X̄n)2/(2π f̃ ∗n (0)) = 1 and the assertions follows by the triangular
inequality.

Proof of Corollary 2.3.3. The assumption∑k∈N |kĉk,n| ≤ C of Theorem2.3.1 ensures that∑k∈N |kĉk,n|2 ≤
C̃. Furthermore, we have E∗(ε∗t )8 < ∞ independently from n. Thus the nonparametric estimator κ̃∗4
of Fragkeskou and Paparoditis (2015) for the fourth moment of the innovation {ε∗t } can be applied
and is consistent under this conditions. The assumption ∑k∈N |kĉk,n| ≤ C ensures that the corre-
sponding autocovariance function |̂̂γn(h)| ≤ |h|−2+εC for some ε > 0 and for all n ∈ N. Thus, the
consistency of a lag-window spectral density estimator given in Jentsch and Subba Rao (2015) follows
by the same arguments as in the proof of Corollary 2.3.2. Since τ2 is a continuous transformation of
κ4 and f , we construct the following consistent estimators of τ2 > δ where 0 < εn < δ and εn → 0,

as n → ∞,

τ̃∗
2 = max(εn, (

κ̃∗4
σ4 − 3)(

∫ 2π

0
f̃ ∗n (λ) ∑

h∈Z
d(h) exp(ihλ)dλ)2 + 4π

∫ 2π

0
| f̃ ∗n (λ) ∑

h∈Z
d(h) exp(ihλ)|2dλ)

which is based on X1∗, . . . , X∗
n and

τ̃2 = max(εn, (
κ̃4

σ4 − 3)(
∫ 2π

0
f̃n(λ) ∑

h∈Z
d(h) exp(ihλ)dλ)2 + 4π

∫ 2π

0
| f̃n(λ) ∑

h∈Z
d(h) exp(ihλ)|2dλ)

which is based on X1, . . . , Xn. The assertions follows with Theorem 2.3.1 and the same arguments
as in the proof of Corollary 2.3.2.

2.7 Estimation of a Moving Average Model
The result established in section 2.2.2 can be used to estimate the coefficients of a moving average
model of order q. Let {εt, t ∈ Z} be some white noise with variance σ2 and {Xt, t ∈ Z} a MA(q)
model given by Xt = ∑

q
j=1 cjεt−j + εt, where C(z) = ∑

q
j=1 cjzj + 1 �= 0 for all |z| ≤ 1. Hence, we

are considering here only the case where all roots of the moving average polynomial are outside
the unit disk. This ensures that a given spectral density possesses a unique representation by a
moving average model. Furthermore, since all roots are outside the unit disk, the spectral density
f fulfills C2 > f (λ) > C1 for all λ ∈ [0, 2π] for some C1, C2 > 0. Denote minλ∈[0,2π] f (λ) =

C1 > 0 and maxλ∈[0,2π] f (λ) = C2 < ∞. This restriction is similar to the case given in the Yule-
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Walker equations for the estimation of an autoregressivemodel. Using the Yule-Walker equations to
estimate the coefficients of an autoregressive model leads to an autoregressive polynomial with all
roots outside the unit disk. We consider the case that the order q of the moving average polynomial
is known. Furthermore, consider the spectral density estimator

f̂n(λ) = f̃n(λ)− min
λ∈[0,2π]

f̃n(λ) + C1, where f̃n(λ)2π
q

∑
h=−q

γ̂n(h) exp(−ihλ), (2.7.1)

where γ̂n(h) is an estimator of the autocovariance function and it fulfills |γ̂n(h) − γ(h)| =

OP(
√
(n − h)/n). Let ĉ1,n, . . . , ĉq,n, σ2

n be the estimators obtained by using the spectral density
factorization described in section 2.2.2 with the spectral density estimator (2.7.1). The following
results can be established.

Theorem 2.7.1. Let Xt = ∑
q
j=1 cjεt−j + εt, t ∈ Z be a moving average model of order q and the moving

average polynomial has all its roots outside the unit disk. Furthermore, let γ̂n be an estimator of the autoco-

variance function and it fulfills |γ̂n(h)− γ(h)| = OP(
√
(n − h)/n). Then the estimators ĉ1,n, . . . , ĉq,n, σ2

n

obtained by using the spectral density factorization described in section 2.2.2 with the spectral density estimator

(2.7.1) fulfill

1.

σ̂2
n = σ2 +

1
C1

OP

(
q√
n

)
,

2.
q

∑
k=1

|ck − ĉk,n| =
√

C2

C1
OP

(
q3/2 1√

n

)
.

Proof. Since we are in the setting of a moving average process of order q, we have for the spectral
density estimator 2.7.1 the following convergence rate

sup
λ∈[0,2π]

| f̂n(λ)− f (λ)| ≤ 2 sup
λ∈[0,2π]

| 1
2π

q

∑
h=−q

(γ(h)− γ̂n(h)) exp(−ihλ)|

≤ 1
π

q

∑
h=−q

|γ(h)− γ̂n(h)| =
q

∑
h=−q

OP

(√
n − h
n

)
= OP

(
q√
n

)
.

Since f , f̂n are strictly positive, this convergence rate can be also obtained for f̂n
1/2 and log f̂n.

Hence, we have
sup

λ∈[0,2π]

| f̂n(λ)
1/2 − f (λ)1/2| = C−1/2

1 OP

(
q√
n

)
,

and
sup

λ∈[0,2π]

| log f̂n(λ)− log f (λ)| = C−1
1 OP

(
q√
n

)
.
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Theorem 2.2.2 a) gives us the following bound

q

∑
k=1

|ck − ĉk,n|2 ≤
∫ 2π

0

(
f 1/2(λ)− f̂n

1/2
(λ)
)2

dλ+ sup
λ∈[0,2π]

( f (λ) f̂n(λ))
1/2
∫ 2π

0
(log f (λ)− log f̂n(λ))

2dλ.

Hence, we obtain ∑
q
k=1 |ck − ĉk,n|2 ≤ OP(q2/n)C2/C1. Using Minkowski’s inequality we obtain

∑
q
k=1 |ck − ĉk,n| ≤ OP(q3/2/

√
n)
√

C2/C1. Since σ̂2
n = exp((2π)−1

∫ π
−π log( f̂n(λ))dλ), we have with

Jensen’s theorem

|(σ̂2
n − σ2)/σ2| = ±(exp((2π)−1

∫ π

−π
log( f̂n(λ)/ f (λ))dλ)− 1)

≤

⎧⎪⎨⎪⎩(2π)−1
∫ π
−π( f̂n(λ)− f (λ))/ f (λ))dλ) ≤ 1/C1 supλ∈[0,2π] | f̂n(λ)− f (λ)|

−(1 + (2π)−1
∫ π
−π log( f̂n(λ)/ f (λ))dλ) + 1 ≤ supλ∈[0,2π] | log f̂n(λ)− log f (λ)|

= C−1
1 OP

(
q√
n

)
.

The spectral density estimator as well as the proof are kept simple and might be not chosen opti-
mally regarding the obtained constants. The focus is here to obtain

√
n consistency for the moving

average coefficients. Hence, as can be seen in the spectral density estimator given by 2.7.1, the spec-
tral density factorization gives an easy and

√
n consistent way to fit an MA(q)model. However, in a

finite sample, one challenge remains. The constant C1 is usually unknown, that is why we recom-
mend to use some factor such as 1/n. This ensures that the estimator is positive. Furthermore, this
factor is small enough so that this factor does not interfere with the

√
n-rate. Besides the strategy

of lifting the whole spectrum, which is like adding independent white noise to the process, another
strategy is to bound the obtained spectrum from below. Hence f̃ = max(C, f̂ ). Both approaches
are asymptotically negligible. However, lifting the whole spectrum keeps the inherent structure and
may give better finite sample results.

2.8 Comparison with the Linear Process Bootstrap
The Linear Process Bootstrap (LPB) has been introduced by McMurry and Politis (2010). To briefly
describe this procedure, we center the vector of observations X = (X1, . . . , Xn) and consider the
empirical autocovariance matrix Γ̂n = n−1(X − Xn1n)(X − Xn1n)�, where Xn is the sample mean
and 1n = (1, 1, . . . , 1)�. To ensure stability, Γ̂n is tapered such that a banded matrix Γ̃n is obtained,
seeMcMurry and Politis (2010) for details. A key step in the LPB algorithm is the computation of the
matrices Γ̃−1/2

n and Γ̃1/2
n . Using Cholesky’s decomposition gives the expression Γ̃n = ΦnΣnΦ�

n with
Σn a diagonalmatrix andΦn a unit lower triangularmatrix. Let Bn = Φ−1

n . The LPB algorithm then

2.8 Comparison with the Linear Process Bootstrap

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



48

generates new pseudo time series Y∗
n = (Y∗

1 , Y∗
2 , . . . , Y∗

n )
� as follows. It first computes the residual

vector Zn = Σ−1/2
n BnX and standardizes Zn, such that the residuals have mean zero and variance

one. Denote the standardized vector by Z̃n = (Z̃1, Z̃2, . . . , Z̃n)�. A vector Z∗
n = (Z∗

1 , . . . , Z∗
n) is

generated by choosing for each j = 1, 2, . . . , n, the pseudo random variable Z∗
j with replacement

from the set {Z̃1, . . . , Z̃n}. Y∗
n is then computed as Y∗

n = ΦnΣ1/2
n Z∗

n.

To better understand the above LPB procedure, it is important to shed some light on the matrix
Bn; see also Pourahmadi (2001, Chapter 6 and 7). Let X̂1 = 0 and X̂l+1 be the projection of Xl+1

onto span{X1, . . . , Xl}, i.e., X̂l+1 = ∑l
k=1 βk,lXl+1−k, where the coefficients βk,l are obtained by solv-

ing the corresponding Yule-Walker equations. These projections for l = 0, . . . , n − 1 together with
the Gram-Schmidt procedure lead to the innovations (Z1, . . . , Zn); see also Pourahmadi (2001, Sec-
tion 7.1.2). That is, we have, Zl+1 = (Xl+1 − ∑l

k=1 βk,lXl+1−k)/σl , l = 1, . . . , n − 1, where σl =

‖Xl+1 − ∑l
k=1 ak,lXl+1−k‖ and Z1 = X1/‖X1‖. This means that in the first step, the LPB procedure

uses the above equation for l = 0, . . . , n − 1 to get the residuals Z1, Z2, . . . , Zn and the covariance
matrix Σn = diag(σ2

0 , . . . , σ2
n−1). The unit lower triangular matrix Bn = (−βi−j,i−1)i=2,...,n,j=1,...,i−1

consists of the corresponding AR(l) coefficients for values of l = 1, . . . , n − 1. With B−1
n = Φn =

(φi−j,i−1)i=1,...,n,j=1,...,i, Y∗
l+1 is then generated as Y∗

l+1 = ∑l
k=0 φk,lσl−kZ∗

l+1−k, l = 1, . . . , n − 1. Thus
the pseudo observation Y∗

1 , . . . , Y∗
n of the LPB are obtained as linear transformations of the gener-

ated pseudo innovations Z∗
1 , . . . , Z∗

n, where the coefficients of this linear transformations depend
on the index t of Y∗

t . In fact to generate Y∗
l a MA(l − 1) model is used and the order of this mov-

ing average model changes with the index l. Furthermore, the calculations undertaken to compute
the matrix Φn are identical to those used in the innovation algorithm (Brockwell and Davis, 1991,
Proposition 5.2.2) to compute the moving average coefficients. Consequently, the MA(q − 1)-model
used to generate the q-th pseudo observation Y∗

q , corresponds to the (q − 1)-th iteration of the
innovation algorithm. Since Γ̃n is a banded matrix, the order of the used moving average model
stabilizes. Nevertheless, the coefficients of these models can still differ slightly from iteration to
iteration. As pointed out in section 2.2, the coefficient φk,l converges to the coefficient ck of the
Wold representation of the process X as l → ∞ for any k = 1, 2, . . . . Similarly, the coefficient βk,l

of the corresponding AR(l) fit converges to the coefficient bk of the autoregressive representation
of the process, as l → ∞, for any k = 1, 2, . . . . Nevertheless, in finite samples, the coefficients βk,l

resp. φk,l differ in general from the coefficients ĉk,n resp. b̂k,n obtained using the factorization of the
estimated spectral density f̂n.

In order to clarify the differences, we examine the following example. Consider the time series
Xt = εt − εt−1, t ∈ Z, with an innovations process εt havingmean zero and variance one. The above
MA(1) representation is also the Wold representation of this process. Assume that the autocovari-
ance is known. The LPB algorithm leads to the coefficients b0,l = 1, b1,l = l/(l + 1), bk,l = 0, for

2 Spectral-Density-Driven Bootstrap
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k ≥ 2 and the variance σ2
l = 2 ∏l

k=1(1 − (l + 1)−2); see also example 7.1 b in Pourahmadi (2001).
Let Z∗

1 , . . . , Z∗
n be the standardized pseudo innovations. Then we have the following equations for

generating the pseudo observations:

Y∗
1 =

√
2Z∗

1 ,

Y∗
2 =

√
3/2Z∗

2 −
√

1/2Z∗
1 ,

Y∗
3 =

√
4/3Z∗

3 −
√

2/3Z∗
2

...

Notice that the pseudo observations Y∗
1 , Y∗

2 , . . . have the same covariance structure as the process
X, but a stable model structure appears only asymptotically. The same holds true for the coefficients
of the moving average representation used to generate the pseudo observations Y∗

l . As it is seen, these
coefficients converge to the true coefficients as l → ∞, but they differ for any finite sample.
In contrast to this, if one factorizes the spectral density, f (·) = 1/(2π)∑1

h=−1 γ(h) exp(ih·), as
used in the spectral-density-driven bootstrap procedure proposed, one would directly get the true
coefficients in themoving average representation and could use them to generate the pseudo obser-
vations. Consequently, the LPB creates a pseudo data-vector (Y∗

1 , . . . , Y∗
n ) where for each index t a

differentMA-model is used to generate the pseudo observationY∗
t and theMA-order used increases

with the index t. This is in contrast to the spectral-density-driven bootstrap procedure, where a time
series X∗

1 , X∗
2 , . . . , X∗

n is generated using the estimated (possible infinite) moving average represen-
tation of the process.

The linear process bootstrap procedure can be slightly modified such that a stablemoving average
representation is used, c.f. McMurry and Politis (2017). The idea is to create bootstrap samples by
using the last row of coefficients given by Φn, e�n Φn. Hence, we have Y∗

t = ∑n−1
j=0 φj,n−1ε∗t , t ∈ Z,

where {ε∗t , t ∈ Z} is some pseudo innovation process. The obtained bootstrap procedure is sim-
ilar to the spectral-density-driven bootstrap. The difference is that the coefficients φj,n−1, j =

0, . . . , n − 1 are obtained by the factorization of an autocovariance matrix Γn = (γ(i − j))i,j=1,...,n,
whereas the coefficients {ck, k ∈ N0} are obtained by the factorization of a spectral density f (·) =
1/(2π)∑h∈Z γ(h) exp(−ih·). For the case n → ∞, hence, Γ = (γ(i − j))i,j∈N, the autocovariance
matrix contains the same information as the spectral density. Both describe the second-order prop-
erties of a given time series completely. Given the same informations, both factorization procedures
lead to the same coefficients. However, in practice it is not possible to work with the infinite struc-
ture. Instead of Γa finite Γm is factorized and as mentioned in section 2.2.2 the integrals to compute
the coefficients (ck) are usually approximated by a sum over a finite number M of frequencies.
These approximations lead to a slightly different result for finite m and M. However, simulations

2.8 Comparison with the Linear Process Bootstrap

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



50

for a given autocovariance show that if m and M gets larger the differences soon becomes negligi-
ble, see Subsection 2.8 for details. The factorization of autocovariance matrices has the charming
aspect that one gets ’true’ zeros, whereas the factorization of spectral densities has the advantage
that the numerical error is smaller in the case that a closed form of the spectral density exists for
autocovariance functions γ with |γ(h)| > 0 for all Z, such as autoregressive or exponential mod-
els. Furthermore, the fast Fourier transform used by the spectral density factorization scales better
than the Cholesky factorization. Hence, despite the fact that M needs to be of order O(n2) to ob-
tain adequate approximation of ck, k = 1, . . . , n, for larger n the spectral density is way faster than a
factorization of Γn.

Let (ck) be the Wold coefficients, (φ̂k,n) be estimators given by a factorization of an empirical
autocovariance matrix and (ĉk,n) be estimators given by a spectral density estimator. Then we have
under some assumptions, mainly that the spectral density estimator is uniformly consistent, see
Theorem 2.2.2, that ∑∞

k=0 |ĉk,n − ck| = oP(1). Under some assumptions, mainly that the empirical
autocovariance matrix is trimmed adequately by using a flat-top kernel, McMurry and Politis (2017)
proofed ∑∞

k=0 |φ̂k,n − ck| = oP(1). So it can be shown that both estimators are globally consistent,
however, the consistency of the factorization of an empirical autocovariance matrix is (so far) only
proofed for a special class of estimators of the second-order structure.

Comparison of autocovariance matrix factorization and spectral density factorization

In order to investigate the differences in finite samples between the factorization of spectral densi-
ties and autocovariance matrices a simulation study is performed. For this the second-order prop-
erties ofModel I, Model II andModel III given in section 2.4 are used. The focus is not to investigate
the finite sample performance of a given spectral density estimator that is why no estimator at all is
used. Instead, we consider the setting that the true autocovariance is known up to order n. This is
comparable to the setting that the same estimation procedure is used in both factorization meth-
ods. In order to factorize an autocovariance matrix of order m > n or to factorize a spectral density
based on the autocovariances up to n given at Fourier frequencies M > n, it is necessary to extend
the autocovariance. This is done by adding zeroes up to order m or M, respectively. Positive defi-
niteness of the extended autocovariance function is ensured by lifting the resulting spectral density
above level zero. Hence, γ(0) is increased such that the extended autocovariance function becomes
positively definite.

The results for Model I, an AR(1) process given by Xt = 0.9Xt−1 + εt, are given in Table 2.4. This
process possesses a fastly decaying autocovariance function, hence, its second-order properties are
almost entirely described by an autocovariance function up to lag 1024. Furthermore, its Wold
coefficients decline rapidly and consequently, this model brings no difficulties. Both factorizations
perform perfectly.
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The results for Model II, an ARMA(4, 2) process given by Xt = 1.34Xt−1 − 1.88Xt−2 + 1.32Xt−3 −
0.8Xt−4 + εt + 0.71εt−1 + 0.25εt−2, are given in Table 2.5. This process possesses a slowly decaying
autocovariance function, even |ρ(210)| ≈ 5%. Consequently, its autocovariance function is needed
to a large lag to sufficiently describe its second-order properties. That is why, independently from
the used factorization the deviation between the true Wold coefficients and their estimation only
gets small if n is sufficiently large, n ≥ 4096. The differences between (φ̂k,n,m) and (ĉk,n,M) are rather
small for larger m, M, respectively. However, for smaller n the autocovariance matrix factorization
seems to perform a little bit better, whereas its vice versa for larger n.

The results for Model III, a MA(10) process given by Xt = εt + ∑10
k=1 (

n
k)(−1)kεt−k, are given in

Table 2.6. Since this process is a moving average model of order 10, only autocovariances up to 10

could be different from 0. Themoving average polynomial possesses a ten times unit root at exp(i0),
hence, its spectral density is zero at λ = 0. This makes this setting very challenging and it can be
seen that both factorizations more or less fail. The deviation between the true Wold coefficients
and their estimation is rather large. Nevertheless, it is nicely visible that the deviation gets smaller
the bigger m, M gets. In this setting the spectral density factorization clearly outperforms the auto-
covariance factorization, so the spectral density is best among worst in this setting. However, even
for M = 228 we have a deviation of 348. Note that the deviation between the corresponding spec-
tral densities is negligible,

∫ π
−π |∑∞

k=0 ck − ĉk,1024,224 exp(ikλ)|dλ < 10−5. Furthermore, note that
m = 214 and M = 228 are the highest (integer) powers of 2 which requires less than 16 GB of RAM
to compute the factorization in R.

Table 2.4: Comparison of autocovariance matrix factorization ((φ̂k,n,m)) and spectral density factorization
((ĉk,n,M)) for Model I: Xt = 0.9Xt−1 + εt

n = m, M1/2 = min(n, ·) ∑100
k=1 |φ̂k,n,m − ck| ∑100

k=1 |ĉk,n,M − ck| ∑100
k=1 |φ̂k,n,m − ĉk,n,M|

1024 256 2.06e-14 1.93e-14 2.56e-14
1024 1024 2.57e-14 1.40e-14 2.11e-14
1024 4096 1.76e-14 1.43e-14 1.90e-14
2048 256 2.59e-14 1.93e-14 2.95e-14
2048 1024 2.59e-14 1.40e-14 2.55e-14
2048 4096 1.97e-14 1.42e-14 1.76e-14
4096 256 1.67e-14 1.90e-14 2.04e-14
4096 1024 1.67e-14 1.42e-14 1.43e-14
4096 4096 2.07e-14 1.43e-14 1.79e-14
8192 256 1.78e-14 1.80e-14 2.00e-14
8192 1024 1.78e-14 1.42e-14 1.66e-14
8192 4096 1.78e-14 1.44e-14 1.77e-14
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Table 2.5: Comparison of autocovariance matrix factorization ((φ̂k,n,m)) and spectral density factorization
((ĉk,n,M)) for Model II: Xt = 1.34Xt−1 − 1.88Xt−2 + 1.32Xt−3 − 0.8Xt−4 + εt + 0.71εt−1 + 0.25εt−2

n = m, M1/2 = min(n, ·) ∑100
k=1 |φ̂k,n,m − ck| ∑100

k=1 |ĉk,n,M − ck| ∑100
k=1 |φ̂k,n,m − ĉk,n,M|

1024 256 94.1 71.8 60.5
1024 1024 74.1 71.8 3.17
1024 4096 70.8 7.18e+01 1.70e+00
2048 256 32.1 2.56e+01 6.85e+00
2048 1024 32.1 2.56e+01 6.84e+00
2048 4096 24.1 2.56e+01 1.52e+00
4096 256 0.343 3.04e-03 3.40e-01
4096 1024 0.343 3.04e-03 3.40e-01
4096 4096 1.63e-11 3.04e-03 3.04e-03
8192 256 3.20e-07 2.08e-11 3.20e-07
8192 1024 3.20e-07 7.85e-12 3.20e-07
8192 4096 3.20e-07 1.15e-11 3.20e-07

Table 2.6: Comparison of autocovariance matrix factorization ((φ̂k,n,m)) and spectral density factorization
((ĉk,n,M)) for Model III: Xt = εt + ∑10

k=1 (
n
k)(−1)kεt−k

n = m, M1/2 = min(n, ·) ∑100
k=1 |φ̂k,n,m − ck| ∑100

k=1 |ĉk,n,M − ck| ∑100
k=1 |φ̂k,n,m − ĉk,n,M|

1024 256 624 524 111
1024 1024 585 458 135
1024 4096 548 399 151
2048 256 624 524 111
2048 1024 585 458 135
2048 4096 548 399 151
1024 m = 213, M = 226 530 372 158
1024 m = 214, M = 228 513 348 165

2.9 Additional Simulation Results

2.9.1 Sample Size n = 128

Tables 2.7 and 2.8 present additional results about the coverage probabilities if n = 128 and non-
studentized statistics are used by the different bootstrap methods.
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Table 2.7: Coverage probabilities (in percent) for themean using the non-studentized statistic X̄n for a sample
size n = 128

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 73.0 82 87.3 75.6 86.5 92.5 81.2 90.0 94.1
LPB 67.5 76.2 83.0 83.4 90.4 94.3 67.2 74.9 81.2
TBB 60.7 70.2 75.1 36.8 44.0 49.7 52.3 60.9 67.5
ND 74.1 82.3 87.1 76.2 86.6 92.5 79.4 92.3 96
ARS 72.4 81.7 87.3 67 78.4 86.4 60.6 73.2 81.3
BB 42.2 49.3 54.0 59.5 70.5 78.3 16.3 21.2 27.1

Table 2.8: Coverage probabilities (in percent) for the lag 2 autocorrelation using the non-studentized empir-
ical autocorrelation at lag2 and for a sample size n = 128

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 81.7 89.6 92.9 76.8 83.9 89.1 78.2 88.2 92.5
LPB 85.1 91.4 94.9 86.9 90.9 94.0 81.8 91.0 94.7
TBB 73.1 78.3 82.0 15.4 18.5 20.5 66.1 72.8 76.2
ND 83.4 92.1 96.2 81.4 89.3 93.4 78.9 89.4 94.5
ARS 81.5 89.5 92.8 55.4 62.5 66.8 79.5 88.5 93.3
BB 88.3 95.0 97.1 62.7 80.7 86.9 92.9 98.1 99.1

2.9.2 Sample Size n = 512

Table 2.10 and 2.9 present additional results about the coverage probabilities if n = 512 and the
studentized and non-studentized mean statistic are used by the different bootstrap methods.

Table 2.9: Coverage probabilities (in percent) for the mean using studentized statistic of X̄n(2π f̂n)−1/2 and
for a sample size n = 512

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 80.2 90.1 95.0 79.2 89.1 94.1 82.4 91.2 95.9
LPB 79.4 89.2 93.8 82.3 89.0 92.3 39.1 52.0 69.0
TBB 72.0 81.9 87.6 31.1 37.3 42.1 47.0 52.6 58.0
ND 77.0 87.0 92.8 74.9 84.9 91.4 27.1 37.1 44.9
ARS 79.2 89.4 94.1 79.8 88.9 93.7 46.7 60.7 73.4
BB 19.1 35.8 51.8 20.7 35.4 52.2 30.1 41.9 51.4

2.9 Additional Simulation Results

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



54

Table 2.10: Coverage probabilities (in percent) for the mean using the non-studentized statistic X̄n and for a
sample size n = 512

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 76.2 86.9 92.8 79.5 89.8 95.0 83.1 90.9 95.2
LPB 74.0 84.1 89.3 83.0 90.8 94.5 69.4 76.4 85.4
TBB 70.0 79.6 84.8 29.0 35.7 41.3 50.5 58.0 65.4
ND 77.0 87.5 92.8 79.8 89.8 95.1 81.3 95.0 97.3
ARS 76.1 87.1 92.8 73.7 85.3 91.6 67.2 80.5 87.3
BB 59.6 62.5 64.7 92.7 96.9 98.4 50.2 61.5 64.2

Table 2.12 and 2.11 present additional results about the coverage probabilities when n = 512 and
the studentized and non-studentized sample autocorrelation at lag 2 are used by the different boot-
strap methods.

Table 2.11: Coverage probabilities (in percent) for the lag 2 autocorrelation using the studentized the empir-
ical autocorrelation at lag 2 and for a sample size n = 512

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 81.8 90.7 94.7 83.3 91.6 95.3 79.6 89.5 95.5
LPB 83.5 92.4 95.2 93.6 96.8 98.0 80.3 89.8 95.3
TBB 84.0 91.4 94.5 26.6 29.1 31.6 78.5 86.4 90.8
ND 80.1 89.6 94.0 78.1 88.8 93.2 79.7 89.1 95.1
ARS 81.3 90.3 94.8 84.7 92.6 95.8 79.8 90.4 94.7
BB 19.9 37.0 53.9 18.0 31.6 48.5 20.4 35.9 52.5

Table 2.12: Coverage probabilities (in percent) for the lag 2 autocorrelation using the non-studentized the
empirical autocorrelation at lag 2 and for a sample size n = 512

Model I Model II Model III
(1 − α)100 80.0 90.0 95.0 80.0 90.0 95.0 80.0 90.0 95.0
SDDB 79.4 87.0 92.9 76.2 83.7 87.8 82.4 91.2 94.9
LPB 81.2 89.5 94.3 88.8 92.3 95.0 83.6 92.0 95.8
TBB 78.6 85.9 90.1 24.0 28.0 30.6 79.5 88.1 90.8
ND 80.4 89.1 95.2 80.6 89.6 93.5 82.5 91.5 95.6
ARS 79.4 87.5 92.1 63.0 70.4 74.7 82.6 91.1 94.7
BB 99.8 100 100 86.1 91.3 93.7 100 100 100

2 Spectral-Density-Driven Bootstrap
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2.10 Additional proofs
In order to proof (2.4), we first proof this useful lemma.

Lemma 2.10.1. Consider the open set Gβ = {z ∈ C : z = 1 − βz̃, z̃ ∈ C, ‖z̃| < 1}. Then it holds for

|β| ≤ 1 that log is analytic on Gβ and furthermore, we have

log(z) = −
∞

∑
k=1

(βz̃)k

k
, for all z = 1 − βz̃, z̃ ≤ 1, βz̃ �= 1.

Proof. There is no periodicity of exp in Gβ, thus, exp is injective on Gβ. To see this, consider z =

1− βz̃ ∈ Gβ and a 2π shift of it, i.e., z + il2π, l ∈ Z, l �= 0. We have z + il2π = 1− β(z̃ − il2π/β) �∈
Gβ, since |z̃ − il2π/β| ≥ ||z̃| − |2π|/|β|| = 2π/β − |z̃| ≥ 2π − 1 > 1. Furthermore, it holds
exp(z) �= 0 for all z ∈ Gβ.

With the Implicit Function Theorem, see Freitag and Busam (2006, Satz 5.7, p. 46), we have that
exp(Gβ) = {y ∈ C : y = exp(z), z ∈ Gβ} is an open set and exp−1(y) =: log(y) : exp(Gβ) → C is
an analytic function with derivative 1/y.

For |z = t exp(iλ)| < 1 it holds ∑∞
k=0 tk exp(ikλ) = 1/(1 − t exp(λ)). An integration over t form

0 to r < 1 gives us
∫ r

0 ∑∞
k=0 tk exp(iλk)dt =

∫ r
0

1
1−t exp(iλ)dt ⇐⇒ −∑∞

k=1
1
k rk exp(iλk) = log(1 −

r exp(iλ)) Due to the continuity of these expression, this can be extended to r = 1 for λ �= 0.

Wold’s power series has no roots inside the unit disk, thus every linear factor can be written in the
form of Gβ.

Lemma 2.10.2. Let f = |C(exp(iλ))|2|σ/(2π) be a spectral density of a nondeterministic stationary pro-

cess and assume that the power seriesC(z) = ∑∞
k=0 ckzk, c0 = 1 has no roots inside the unit disk. Furthermore,

let ak =
∫
(−π,π] log f (λ) exp(−ikλ)dλ/(2π), k ∈ Z be the k-th Fourier coefficient of log f . Then it holds

for |z| < 1

σ(2π)−1/2
∞

∑
k=0

ckzk = exp

(
a0/2 +

∞

∑
k=1

akzk

)
.

If the spectral density is bounded, this holds for |z| = 1 as well.

Proof. Let β j, j = 1, 2, . . . be the roots of C, consequently C(z) = ∑∞
k=0 ckzk = ∏∞

j=1(1 − β jz). Since
C(z) �= 0 for all |z| < 1, it holds |β j| ≤ 1 for all j = 1, 2, . . . . Let β0 = σ/

√
2π, φ(z) = β0 ∏∞

j=1(1−
β jz), and φ+(z) = exp

(
1

2π

∫ 2π
0

exp(it)+z
exp(it)−z log |φ(exp(it))|dt

)
. Since log f is integrable, log |φ| is

integrable and φ+ defines an outer function and is analytic inside the unit disk, see (Hoffman, 1962,
Chapter 5). Let z = r exp(iλ), then

2.10 Additional proofs
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φ+(r exp(iλ)) = exp
(

1
2π

∫ 2π

0

1 + r exp(i(λ − t))
1 − r exp(i(λ − t))

log |φ(exp(it))|dt
)

= exp

(
1

2π

∫ 2π

0

(
2

∞

∑
j=0

rj exp(i(λ − t)j)− 1

)
log |φ(exp(it))|dt

)
.

With log |φ(exp(it))| = log |β0|+ ∑∞
l=1 log |1 − βl exp(it)| we have

φ+(r exp(iλ)) = |β0| exp

(
1

2π

∫ 2π

0

(
2

∞

∑
j=0

rj exp(i(λ − t)j)− 1

)
dt

)

× exp

(
− 1

2π

∫ 2π

0

∞

∑
l=1

log |1 − βl exp(it)|dt

)

× exp

(
1

2π

∫ 2π

0

(
∞

∑
j=0

rj exp(i(λ − t)j)− 1

)
∞

∑
l=1

log
(
(1 − β j exp(it))(1 − β̄ j exp(−it))

)
dt

)

=: (I)× (I I)× (I I I),

with obvious notation for (I), (I I), (I I I). We get for these terms using Lemma 2.10.1

(I I I) = exp

(
1

2π

∫ 2π

0

(
∞

∑
j=0

rj exp(i(λ − t)j)− 1

)
∞

∑
l=1

log(1 − β j exp(it)) + log(1 − β̄ j exp(−it))dt

)

=
∞

∏
l=1

exp

((
∞

∑
j=0

rj exp(i(λ)j)− 1

)
∞

∑
k=1

(−1)
k

(βl)
k 1
2π

∫ 2π

0
exp(it(k − j))dt

)

· exp

((
∞

∑
j=0

rj exp(i(λ)j)− 1

)
∞

∑
k=1

(−1)
k

(β̄l)
k 1
2π

∫ 2π

0
exp(−it(k + j))dt

)

=
∞

∏
l=1

exp

(
−

∞

∑
k=1

(β)k

k
rk exp(ikλ)

)
=

∞

∏
l=1

(1 − βlr exp(iλ)),

(I) = exp
(

2 ∑∞
j=0 rj exp(iλj)

∫ π
−π exp(−itj)dt/(2π)− 1

)
|β0| = |β0|, and

(I I) = exp

(
−1/2

(
1

2π

∫ π

−π

∞

∑
l=1

log(1 − βl exp(it)) + log(1 − β̄l exp(−it))dt

))

= exp

(
∞

∑
l=1

∞

∑
k=1

1
2k

(
(βl)

k
∫ π

−π
exp(itk)dλ + (β̄l)

k
∫ π

−π
exp(−itk)dλ

))
= 1.

Consequently, we get

φ+(r exp(iλ)) = |β0|
∞

∏
l=1

(1 − βlr exp(iλ)) = |β0|
∞

∏
l=1

(1 − βlz) = φ(z).

2 Spectral-Density-Driven Bootstrap
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Furthermore, we have

exp

(
1

2π

∫ 2π

0

(
2

∞

∑
j=0

rj exp(i(λ − t)j)− 1

)
log |φ(exp(it))|dt

)
= exp

(
a0/2 +

∞

∑
k=1

ak(r exp(iλ))k

)
,

and with β0 = |β0| = σ/
√
(2π) the assertion follows.

A bounded spectral density ensures that ∑∞
k=0 ck exists and is bounded. If

limn→∞ ∑n
k=1 ak = −∞ we consider exp(a0/2 + ∑∞

k=1 ak) = 0. Because the spectral density is
bounded, limn→∞ ∑n

k=1 ak = ∞ is not possible. Thus, exp(a0/2 + ∑∞
k=1 ak) is also well defined

and bounded. Consequently, since both expression are continuous in z, the assertion holds in the
case of a bounded spectral density for |z| = 1 as well.

Lemma 2.10.3. If the Fourier coefficients of log f fulfill

ak =
∫ π
−π log( f (λ)) exp(−ikλ)dλ/(2π) = O(k−3), then the coefficients (cj)j≥0 satisfy cj = O(j−3)

and therefore ∑∞
j=0 |jcj| < ∞.

If log f is twice continuous differentiable and the second derivate is of bounded variation, the condition

ak = O(k−3) is fulfilled, see (Zygmund, 2002, Ch. 2, Theorem 4.12).

Proof. Follows by equation (2.4).

Notice that for a strictly positive spectral density, the decay behavior of the Fourier coefficients of
log f can be derived by the decay behavior of the autocovariance due to the Wiener-Levy-Theorem,
see for instance Bhatt and Dedania (2003).

2.10 Additional proofs
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3 Time Series Modeling on
Dynamic Networks

3.1 Introduction
Consider a vertex-labeled network with d vertices V = {1, . . . , d}. The number of vertices is fixed
over time, whereas, the edges are time dependent. Thus, over time edges may vanish or new ones
may appear. Throughout this work, directed edges are considered and multi-edges can occur. Such
a dynamic network with a fixed number of vertices can be described by a time dependent adjacency
matrix, here denoted byAd = {Adt, t ∈ Z}, where Adt isNd×d

0 - valued and Adt;ij gives the number
of edges at time t from vertex i to vertex j. The notation Xt;ij is used here for the i-th entry of the j-th
row of Xt. It is further possible to take the strength of the connection into account by using a weight
function w : E → R, see Boccaletti et al. (2006). Hence, each edge is given some weight. This can be
directly expressed in a process {Ãdt, t ∈ Z}, where Ãdt is Rd×d-valued and Ãdt;ij = w((i, j))Adt;ij.
Some results require a limited number of multi-edges which we indicate by the notation that Adt

is {0, . . . , l}−valued, l ∈ N. However, weighting does not affect any of the results given in this
chapter. Hence, the process Ad describes here a weighted, directed network. It is considered that
the network is driven by some random process, hence, the corresponding adjacency matrix process
Ad is a stochastic process.

Such networks could describe social networks, where some actors (e.g. persons) are represented
by the vertices and these actors have some form of relation (e.g. friendship, communication) which
is represented by the edges, see for instance Hanneke and Xing (2007). Since these relations could
change over time, the corresponding network is dynamic. Social media networks such as Facebook
or Twitter are examples for dynamic networks. The actors in such networks often posses attributes
or properties. These attributes can be static (e.g a person’s name or birthday) or dynamic (e.g. per-
sonal income, time a person does sports or amount of alcohol a person drinks). These dynamic
attributes may be affected by the attributes of other actors, especially by actors with which the con-
sidered actor is connected. We denote such an attribute a network-influenced attribute. In this
work the dynamic attributes are denoted by a d-dimensional time series X = {Xt, t ∈ Z}, where
each component of the time series is assigned to a vertex (actor) of the underlying network. In the
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
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social-economical literature the influence of connected actors on the attributes is denoted as peer
effects, see Goldsmith-Pinkham and Imbens (2013); Manski (1993).

In this work the focus is on the network-influenced attributes and not on the network itself. Con-
sequently, this work is not about modeling a dynamic network. For modeling these dynamic net-
works, many models for static networks have been extended to the dynamic case as it is done by
Hanneke et al. (2010); Krivitsky and Handcock (2014) for the Exponential Random Graph Models
(ERGM), see Section 6.5 in Kolaczyk (2009), or by Xu (2015) for the stochastic block model (SBM),
see Goldenberg et al. (2010). This work gives a framework which models the network-influenced
dynamic attributes, that means modeling a time series on a dynamic network in which the edges
influence the dependency of the time series. Knight et al. (2016); Zhu et al. (2017) have considered
these network-influenced attributes for non-random edges, whichmainly covers static networks. In
the context of a static network, network-influenced properties can be considered as an ordinarymul-
tivariate time series with additional information and can bemodeled by using vector autoregressive
(VAR) models, see Lütkepohl (2007, Chapter 2). However, VAR models have many parameters which
is why Knight et al. (2016); Zhu et al. (2017) focus on how to use the network structure to reduce the
number of parameters so that high dimensions become feasible. In contrast, this work deals with a
random network structure and consequently the process X cannot be modeled appropriately by us-
ing VARmodels. That is why wemake use of amultivariate doubly stochastic time series framework.
That is, we consider linear processes or autoregressive models in which the coefficient matrices are
stochastic processes themselves. Doubly stochastic time seriesmodels were introduced in Tjstheim
(1986). In this work, a slightly different notion more similar to the one of Pourahmadi (1986, 1988)
is used.

This chapter is structured as follows. In section 3.2 time series on dynamic networks are defined
and some basic properties are given. In section 3.3 the focus is on statistical results; for instance,
a central limit theorem for the sample mean is displayed and forecasting with such models is dis-
cussed. Some of the forecasting results are underlined by a simulation study which is given in
section 3.4. A real data example is given in section 3.5. Proofs can be found in section 3.7.

3.2 Time Series Modeling on Dynamic Networks
Recall that the dynamic network with d vertices is described by the Rd×d-valued stochastic process
Ad := {Adt, t ∈ Z}. As mentioned before, the doubly stochastic framework is used to model the
time series X := {Xt, t ∈ Z} on the random network Ad. That means, besides some innovation
process ε := {εt, t ∈ Z}, the time series is also driven by the stochastic process Ad. Furthermore,
it is considered that the underlying network Ad is strictly stationary in order to get a stationary
process X. Since some interesting features come only into play if non-centered innovations are

3 Time Series Modeling on Dynamic Network
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considered, the innovations posses a mean μ ∈ Rd. The induced norms are used as matrix norms,
i.e., ‖A‖ = sup‖x‖=1 ‖Ax‖. If not stated otherwise, the L2-norm is used. Themain process structure
of X is defined as follows:

Definition 3.2.1. Let Ad be a Rd×d-valued, strictly stationary stochastic process and let f j : R(d×d)j →
Rd×d be measurable functions. Furthermore, let ε be an i.i.d. sequence of Rd-valued random vectors with

Eε1 = μ ∈ Rd,Var ε1 = Σ (positive definite and ‖Σ‖ < ∞), and ε and Ad are mutually independent. If the

following L2-limes exists,

Xt =
∞

∑
j=1

f j(Adt−1, . . . , Adt−j)εt−j + εt =:
∞

∑
j=1

Bt,jεt−j + εt, (3.2.1)

we denote the process given by X = {Xt, t ∈ Z} a (doubly stochastic) network linear process (DSNLP).
Let p, q ∈ N and f j : R(d×d)j → Rd×d, gs : R(d×d)s → Rd×d, j = 1, . . . , p, s = 1, . . . , q be measurable

functions. A process X fulfilling equation (3.2.2) is denoted as a (doubly stochastic) network autoregressive

moving average process of order (p, q) (DSNARMA(p, q))

Xt =
p

∑
j=1

f j(Adt−1, . . . , Adt−j)Xt−j +
q

∑
s=1

gs(Adt−1, . . . , Adt−s)εt−s + εt. (3.2.2)

The notation Xt = ∑∞
j=0 Bt,jεt−j, where B·,0 ≡ Id and Bt,j = fj(Adt−1, . . . , Adt−j), is used to sim-

plify the notation of DSNLP. Notice that B·,j is a stochastic process and independent of ε. Defining
this with a stochastic process B not necessarily generated by a random network process leads to
doubly stochastic linear processes. For such processes similar results can be established. Since this
work focuses on networks, the focus is on doubly stochastic network processes.

There is no single feasible model which covers all kinds of dynamic networks. Instead, there exist
several models and each of them is suitable for a specific kind of network. The intuition behind
the assumption that ε and Ad are mutually independent is that the time series can be modeled
regardless of what network is underneath. Thus, it does not matter if its a sparse or dense network
or if it has properties like small-world-network. In this work, apart from a mixing condition, the
dynamic network does not need to fulfill any further conditions. Hence, this assumptions gives
flexibility in a way that the time series and the dynamic network can be modeled separately. One
is not fixed to one specific network model as it would be the case for a jointly modeling approach.
Instead, the idea is that the approach describe here is used to model the time series and one of the
several models for dynamic networks can be used to model the network. However, this assump-
tions is more restrictive. It implies that the influence between the network and the time series X

is unidirectional; Ad can influence X, however, Ad is not influenced by X. Some real life exam-
ples may violate this assumption. For instance, when considering the influence of peers on obesity,
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Christakis and Fowler (2007) or grades, Goldsmith-Pinkham and Imbens (2013), the influence can
go both ways. But if shorter periods are considered, the influence of X on Ad may not come into
play. Furthermore, restricting peers to relatives as it is done in Christakis and Fowler (2007) it seems
reasonable to assume that one’s properties like obesity or grades do not influence one’s relatives,
hence X does not influence Ad.

IfAd is a deterministic sequence theDSNARMA are closely related to time-varying ARMAmodels,
which, for instance, are used in the locally stationary framework; see Dahlhaus et al. (1999); Wiesel
et al. (2013). Furthermore, if Ad is i.i.d. the doubly stochastic framework reduces to the framework
of random coefficient models, see for instance Nicholls and Quinn (1982) and for the multivariate
setting Nicholls andQuinn (1981). However, assuming independence between different time-points
for the processAd, seems to be inappropriate in the framework of dynamic networks. Some form of
influence of the recent history seems to bemore reasonable, seeHanneke andXing (2007). As already
mentioned, the focus is not onmodeling the network, which is why the dependence structure of the
network is not further specified here. However, in order to derive statistical results, the dependence
structure needs to be restricted and we consider α-mixing (see section 3.3 for details). Since the
innovation process ε and the network process Ad are independent, and both are stationary, it is
an arbitrary choice at which time point the network process is used to define Xt. Thus, a process
given by Xt = ∑

p
j=1 fj(Adt, . . . , Adt+1−j)Xt−j + ∑

q
s=1 gs(Adt, . . . , Adt+1−s)εt−s + εt has the same

properties. The only difference is the interpretation. Thus, when choosing a definition, one has to
answer: ’Does the current network determine how recent effects influence the process. Or does the
network, which was present when recent effects occurred, determine how recent effects influence
the process?’ If not stated otherwise, we follow the latter interpretation and use the corresponding
Definition 3.2.2. Since directed edges are considered, two natural dependence concepts occur; the
concept that the influence goes in direction with the edge and vice versa. The general definition of
DSNLP and DSNARMA can handle both concepts, however, the model given by (3.2.3) as well as
the models specified in section 3.3 are defined in the sense that the influence goes in edge direction.
Thatmeans, if socialmedia data such as fromTwitter is considered, a person j could be influenced by
the persons whom j follows. Thus, these persons would have a directed edge to j. It is also possible
to define it the other way around, see Wasserman and Faust (1994). However, if X represents flow
in a network, such as traffic amount at given locations, it seems more appropriate to define the
influence in direction of the flow, thus, of the edges.

Consider the following example for the functions fj and gj in Definition (3.2.1). The component-
wisemultiplication ofRd×d matrices is denote by� , thus, for A, B ∈ Rd×d, A� B = (aijbij),i,j=1,...,d.
Let αj ∈ Rn×n, j = 1, . . . , p, β j ∈ Rn×n, j = 1, . . . , q, p, q ∈ N. With f j(Adt−1, . . . , Adt−j) = (αj �
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(doubly stochastic) network autoregressive moving average process of order (p, q)

Xt =
p

∑
j=1

(αj � Adt−j)
�Xt−j +

q

∑
j=1

(β j � Adt−j)
�εt−j + εt (3.2.3)

In this model, the ’influence’ between components is in direction with the edges and each edge is
given a weight. Since Adt;ij = 1 indicates that an edge from i to j is present, we work here with Ad�t .
This model (3.2.3) is inspired by Knight et al. (2016) and it coincides with the definition of network
autoregressive (moving average) process of order (p, q) with neighborhood order 1 for all lags, see
Knight et al. (2016). Higher neighborhood orders can be achieved by usingmore than one adjacency
matrix at a time.

In the following Lemma we specify conditions which ensure stationarity of DSNLPs:

Lemma 3.2.2. Let X be a doubly stochastic linear process as defined in (3.2.1). If

i) ∑∞
s=0
(
E|Bj,s+lΣB�

0,s|
)
+ ∑∞

s1=0 ∑∞
s2=0 |Cov

(
Bj,s1 μ, Bl,s2 μ

)
| < ∞ (component-wise) for all j, l ∈ N

ii) ∑∞
s=0 (E|B0,s|) < ∞ (component-wise),

is fulfilled, then Xt = limq→∞ ∑
q
j=0 Bt,jεt−j converges component-wise in the L2-Limit and the autocovari-

ance function is given by ΓX(h) = ΓX(−h)� and

ΓX(h) =
∞

∑
s=0

E
(

Bh,s+hΣB�
0,s

)
+

∞

∑
j=0

∞

∑
s=0

Cov
(

Bh,jμ, B0,sμ
)

, h ≥ 0 (3.2.4)

and the mean function by μ
x
= ∑∞

j=0 EB0,jμ.

The latter term of the autocovariance function,∑∞
j=0 ∑∞

s=0 Cov
(

Bh,jμ, B0,sμ
)
, comes only into play

for non-centered innovations and is driven by the linear dependency structure of the network. Con-
sequently, it can be seen that the linear dependency of the network directly influences the linear
dependency of the process X. As a consequence, even an DSNMA(q) process may posses a nonzero
autocovariance for lags higher than q. In order to better understand this, consider a small toy exam-
ple with three vertices and two possible edges, (1, 3) and (2, 3), and only one is present at a time. Let
{et, t ∈ Z} be i.i.d. random variables with uniform distribution on [0, 1], i.e., e1 ∼ U [0, 1]. Which
edge is present at time t is given by the random variables (et) in the following way. If Adt−1;13 = 1,
then if et > 0.05, then Adt;13 = 1 else Adt;23 = 1. If Adt−1;13 = 0 (that means Adt−1;23 = 1), then if
et > 0.95, then Adt;13 = 1 else Adt;23 = 1. Consequently, in this network we flip between the edges
(1, 3) and (2, 3) and if one edge is present at time t it is more likely (with probability 0.95) that it is

Adt−j)
�, j = 1, . . . , p and gs(Adt−1, . . . , Adt−s) = (β j � Adt−s)�, j = 1, . . . , q we get the following
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points as well as between edges. ε1 ∼ N (μ, I3), and μ = (10,−10, 0)�. Let X be given by

Xt = (Adt−1)
�εt−1 + εt = (Adt−1)

�Xt−1 + εt, where Ad�· =

⎛⎜⎜⎝
0 0 0

0 0 0

∗ ∗ 0

⎞⎟⎟⎠ . (3.2.5)

Thus, X is a DSNMA(1) process and the influence goes in direction with the edges. Since no edge
goes into vertex 1 or 2, {Xt;1, t ∈ Z} and {Xt;2, t ∈ Z} are white noise. This can be also seen in the
autocovariance function which is displayed in its two parts in Figure 3.1. The left-hand-side figure
displays the first part;∑∞

s=0 E
(

Bh,s+hΣB�
0,s
)
. The dependency of the network has no influence on the

first part, thus, this part would remain the same if Ad is replaced by its expected value. That is why
this part of the autocovariance function has the structure one expects from a vector moving average
(VMA) process of order 1. The right-hand-side figures display the latter part of the autocovari-
ance function; ∑∞

j=0 ∑∞
s=0 Cov

(
Bh,jμ, B0,sμ

)
. As already mentioned, this part is completely driven

by the linear dependence structure of the network. For the two edges, we have the following lin-
ear dependency: Cov(Adt+h;23, Adt;23) = Cov(Adt+h;13, Adt;13) = 0.9h/4,Cov(Adt+h;23, Adt;13) =

Cov(Adt+h;13, Adt;23) = −0.9h/4. This explains the geometric decay in the autocovariance function
of the third component of X, whereas the absolute value of the autocovariance function of the third
component is mainly given by the difference of the mean of the innovations of the first two com-
ponents. Hence, a greater difference of the innovations mean makes it harder to identify the linear
dependency between components 1 and 3, or 2 and 3 respectively. In this particular example with
mean μ = (10,−10, 0)�, no linear dependency between the different components can be identified
for moderate sample sizes. A sample autocorrelation function as well as a realization of the third
component of X is displayed in Figure 3.2 for a sample size n = 500. Instead, looking from the per-
spective of the classical time series analysis, the sample autocorrelation function looks like three
uncorrelated components where the first two components are white noises and the third could be
an AR(1) process. Hence, this examples gives two important aspects to keep in mind: Firstly, the
linear dependency of the network can influence the linear dependency of the time series directly.
Secondly, the problem that the autocovariance functionmay not suffice to identify doubly stochastic
network models such as DSNAR(1).

present at time t + 1 than flipping to the other edge. We have dependency between different time
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Figure 3.1: Left-hand-side (∑∞
s=0 E(Bh,s+hΣB�

0,s); left figure) and right-hand-side (∑
∞
j=0 ∑∞

s=0 Cov(Bh,jμ, B0,sμ);
right figure) of the autocovariance function (3.2.4) of process (3.2.5)
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Figure 3.2: Sample autocorrelation function and realization of the third component of process (3.2.5), based
on n = 500
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In order to give conditions under which there exists a solution of (3.2.2), we firstly consider a
DSARMA(1,0), a doubly stochastic autoregressive process of order 1, given by Xt = f (Adt−1)Xt−1 +

εt. In the univariate case Pourahmadi (1988) gives conditions for the existence of a stationary solution
of such processes. We transfer his ideas to the multivariate case in the following lemma:

Lemma 3.2.3 (Multivariate Version of (Pourahmadi, 1988, Lemma. 2.1)). Consider a doubly stochastic
autoregressive process of order 1, thus, we have

Xt = f (Adt−1)Xt−1 + εt =: At−1Xt−1 + εt, Eε1 = μ,Varε1 = Σ. (3.2.6)

A stationary solution of (3.2.6) is given by

Xt =
∞

∑
j=0

[
j

∏
s=1

At−s

]
εt−j =:

∞

∑
j=0

Bt,jεt−j, (3.2.7)

where Bt,0 = ∏0
s=1 At−s := Id, Bt,j = ∏

j
s=1 At−s ∈ N, if (component-wise)

∞

∑
j=0

E|B0,j| =
∞

∑
j=0

E

∣∣∣∣∣ j

∏
s=1

A−s

∣∣∣∣∣ < ∞, (3.2.8)

∞

∑
j=0

E|B0,jΣdB�
0,j| =

∞

∑
j=0

E

⎡⎣∣∣∣∣∣∣
j

∏
s=1

A−sΣd

(
j

∏
s=1

A−s

)�∣∣∣∣∣∣
⎤⎦ < ∞. (3.2.9)

The mean function is then given by ∑∞
j=0 E ∏

j
s=1 A−sμ = ∑∞

j=0 EB0,tμ and the ACF is given by

ΓX(h) =
∞

∑
j=0

E

⎡⎣( j+h

∏
s=1

Ah−s

)
Σ

(
j

∏
s2=1

A−s

)�⎤⎦+
∞

∑
j1=0

∞

∑
j2=0

Cov

(
j1

∏
s1=1

A−s1 μ,
j2

∏
s2=1

A−s2 μ

)
, h ≥ 0,

ΓX(h) = ΓX(−h)�. The solution 3.2.7 fits into the framework of (3.2.1).

The conditions (3.2.8) and (3.2.9) may not be easy to check. That is why the following Lemma
gives conditions which ensure (3.2.8) and (3.2.9):

Lemma 3.2.4. Let At = f (Adt) and Ad is α-mixing. If there exists a q ≥ 1 such that

E log ‖
q

∏
s=1

A−s‖ < 0, (3.2.10)

then (3.2.8) and (3.2.9) is fulfilled, hence ∑∞
j=0 E

∣∣∣∏j
s=1 A−s

∣∣∣ < ∞ and

∞

∑
j=0

E

⎡⎣∣∣∣∣∣∣
j

∏
s=1

A−sΣd

(
j

∏
s=1

A−s

)�∣∣∣∣∣∣
⎤⎦ < ∞.
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In the same manner as a VAR(p)model can be written as an extended VAR(1)model, see (Lütke-
pohl, 2007, p. 15), a d-dimensionalDSNAR(p)model can bewritten as a d× p-dimensionalDSNAR(1)
model. Consider a DSNAR(p) model given by Xt = ∑

p
j=1 f j(Adt−1, . . . , Adt−j)Xt−j. Then define

Yt = (Xt, . . . , Xt−p+1)
�, ε′t = (εt, 0, . . . , 0), Ãdt = (Adt, . . . , Adt−p+1)

� and

g(Ãdt−1) =:

⎛⎜⎜⎜⎜⎜⎝
f1(Adt−1) f2(Adt−1, Adt−2) . . . fp(Adt−1, . . . , Adt−p)

Id 0 . . . 0
... . . . ...

...
0 0 Id 0

⎞⎟⎟⎟⎟⎟⎠ ,

such that Yt = g(Ãdt−1)Yt−1 + ε′t. We denote the process (Yt) as the stacked process. Thus, the
results for DSNAR(1)models can be transfered to DSNAR(p)models. That is why the focus in this
work is on DSNAR(1)models.
Somenote to the condition (3.2.10). Consider the simplify setting that (Adt) is deterministic, thus
we consider a simple VAR(p) process Xt = ∑

p
j=1 AjXt−j + εt. Let the considered VAR(p) process be

stable, which is given if det(I −∑
p
j=1 Ajzj) �= 0 for all |z| ≤ 1, see Chapter 2 in Lütkepohl (2007). Let

Ã be the coefficient matrix of a stacked VAR(1) process. For a stable VAR(p) process we have that
all eigenvalues of Ã have modulus less than 1, see Chapter 2 in Lütkepohl (2007). However, for such
a stacked coefficient matrix we have that ‖A‖ �≤ 1, see Lemma E.2 in Basu and Michailidis (2015).
But, there exists a q ≥ 1 such that ‖Aq‖ < 1. To see this, let QΛQ−1 = Ã be the Jordan canonical
form. Furthermore, we have Aq = QΛqQ−1 and ‖Λq‖ = O(λ

q
1), where λ1 < 1 is the greatest

absolute eigenvalue of Ã, see Appendix A.6 in Lütkepohl (2007) for a representation of Λq. Since
‖Aq‖ ≤ ‖Q‖‖Q−1‖‖Λq‖ = O(λ

q
1), there exists a q such that ‖Aq‖ < 1. Consequently, Lemma 3.2.4

is not limited to DSNAR(1) processes and can be also applied to stacked DSNAR(p)models.

3.3 Statistical Results for Doubly Stochastic Network
Processes

Lemma 3.2.2 gives conditions for the existence of the ACF and the mean function. In the following
passage we are interested in estimating these quantities based on observation X1, . . . , Xn. Since
the dependency of Ad influences the dependency of process X, conditions for the dependency of
Ad are required to ensure, for instance, an absolutely summable ACF. In order to include many
dynamic network models, we are working with an α-mixing condition of the dependency of Ad.
This, for instance, includes Markovian dynamic networks, see (Bradley, 2007, Theorem 21.22), such
as Temporal ERGMs, see Hanneke et al. (2010). Under the condition that the network process is
α-mixing, consistency and asymptotic normality of the sample mean are shown in the following
theorem.

3.3 Statistical Results for Doubly Stochastic Network Processes
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Theorem 3.3.1. Let Xt = ∑∞
j=0 Bt,jεt−j be an Rd×d-valued doubly stochastic network linear process, with

the following assumptions

1. B0 = Id, Bt,j = f j(Adt, . . . , Adt−j−1), f j : R(d×d)j → Rd×d and fj measurable, j ∈ N. Ad is a

strictly stationary, Rd×d-valued, α-mixing process fulfilling ∑∞
n=1 α(Ad, n)n3 < ∞.

2. The innovations ε are Rd-valued and i.i.d. with Eε0 = μ,Cov(ε0, ε0) = Σ, E|ε0;i1 ε0;i2 ε0;i3 ε0;i4 | =
κ4;i1,i2,i3,i4 < ∞ for all i1, . . . , i4 = 1, . . . , d. ε and Ad are independent.

3. E|B0,j;i1,i2 |4 < ∞ for all j ∈ N, i1, i2 = 1, . . . , d,

∑h∈Z ∑∞
s1,s2=0 |Cov(Bh,s1 μ, B0,s2 μ)|+ ∑∞

s=0 |EBh,s+hΣdB�
0,s| < ∞ (component-wise).

Then, the autocovariance function is absolutely summable and is given by ΓX(h) = ∑∞
s=0 E

(
Bh,s+hΣB�

0,s
)
+

∑∞
j=0 ∑∞

s=0 Cov
(

Bh,jμ, B0,sμ
)

, h ≥ 0, Γ(h) = Γ(−h)�. The mean function is given by μ
x
= ∑∞

j=0 EB0,jμ.

Consider observations X1, . . . , Xn. We have, as n → ∞,

√
n

(
1
n

n

∑
t=1

Xt − μ
X

)
=

√
N
(

X̄n − μ
X

)
D→ N

(
0, ∑

h∈Z
ΓX(h)

)
. (3.3.1)

In the context of single stochastic linear processes, Assumption 3 is similar to the assumption of
dealing with linear processes with absolutely summable coefficients. If the process Ad in Assump-
tion 1 is a Markov process, then the mixing condition is fulfilled under moderate conditions, see
for instance Theorem 21.22 in Bradley (2007) and notice that φ(A,B) ≥ α(A,B) for some σ-fields
A,B. Under similar conditions as in Theorem 3.3.1,

√
n-consistency of the sample autocovariance

can be derived.

Theorem 3.3.2. Let Xt = ∑∞
j=0 Bt,jεt−j be an Rd-valued doubly stochastic network linear process, with the

following assumptions

1. B0 = Id, Bt,j = f j(Adt, . . . , Adt−j−1), f j : R(d×d)j → Rd×d and fj measurable, j ∈ N. Ad is a

strictly stationary, Rd×d-valued, α-mixing process fulfilling ∑∞
n=1 α(Ad, n)1/5 < ∞.

2. The innovations ε are Rd-valued and i.i.d. with Eε0 = μ,Cov(ε0, ε0) = Σ, E|ε0;i1 ε0;i2 ε0;i3 ε0;i4 | =
κ4;i1,i2,i3,i4 < ∞ for all i1, . . . , i4 = 1, . . . , d. ε and Ad are independent.

3. E|B0,j;i1,i2 |4 < ∞ for all j ∈ N, i1, i2 = 1, . . . , d,

∑h∈Z ∑∞
s1,s2=0 |Cov(Bh,s1 μ, B0,s2 μ)|+ ∑∞

s=0 |EBh,s+hΣdB�
0,s| < ∞ (component-wise).

4. ∑∞
s=0

(
E
[
e�i (Bh,sμ − EB0,sμ)

]5)1/5
+ ∑∞

s=1 s
(

E
[
e�i (Bh,sε1 − EB0,sμ)

]4)1/4
< ∞ for all i =

1, . . . , d, h ∈ Z.

Then, given observations X1, . . . Xn, the sample autocovariance function Γ̂(h) = 1/n ∑n−h
t=1 (Xt+h − X̄n)(Xt −

X̄n)�, where X̄n = 1/n ∑n
t=1 Xt, is a consistent estimator, we have Γ̂(h) = Γ(h) +OP(n−1/2).
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Theorem 3.3.2 gives a consistent estimator for the autocovariance function which helps to identify
VAR models, however, as seen in the example in section 3.2, the autocovariance function is not
helpful to identify DSNAR models. Nevertheless, in order to forecast doubly stochastic network
processes, an estimation of DSNARmodels seems helpful. That is why in the following passage the
focus is on deriving consistent estimators for DSNAR(1) models. Hence, a DSNAR(1) processes
as defined in (3.2.2) and given by X = f (Adt−1)Xt−1 + εt is considered. Notice that even if Ad is
Markovian a DSNAR(1) processes can generally not be written as a HiddenMarkovmodels (HMM).
This is because X given Ad is not a sequence of conditionally independent variables and cannot be
written as a noisy functional of Adt−1 only, which is required by a HMM (see Bickel et al. (1998)
for details to HMM). Consequently, techniques used for HMM cannot be applied here. Instead,
the same setting as in Zhu et al. (2017) is considered, thus, the process X as well as the network
Ad is observed; we have observations X1, . . . , Xn and Ad1, . . . , Adn. A DSNAR(1) model is given
by the measurable function f : Rd×d → Rd×d and the mean of the innovations μ. We consider
three different parametrization-settings for f . Ranging from seeing f as an arbitrary function to the
setting for all edges common parameters. We start here with the general setting that f is an arbitrary
measurable function. This may sound like an nonparametric setting, however if we consider the
case that the number of multi-edges is limited then the processAd is discrete and bounded. That is
why f (Ad) has only a finite number N of possible states. Let the possible states ofAd be denoted by
Ãd1, . . . , ÃdN and f (Ãdk) =: αk ∈ Rd×d, k = 1, . . . , N, which reduces the problem to a parametric
one. However, the number of parameters can be challenging — we will come back to this later. Let
Rk = {r ∈ {0, . . . , n − 1} : Adr = Ãdk} be the set of indices at which time points the state Ãdk is
observed. Then we have Xt+1;j = ∑d

s=1 αk;jsXt;s + εt;j = αk;j·Xt + εt;j, t ∈ Rk, j = 1, . . . , d. The least
squares approach is used to derive consistent estimators for αk;j· as well as Eεt;j = μ

j
. Hence, we

have

argminμ̂j,α̂k;j· ∑
t∈Rk

(Xt+1;j − μ̂j − α̂k;j·)2, j = 1, . . . , d, k = 1, . . . , N. (3.3.2)

This leads to the following linear system:

∑
t∈Rk

⎛⎝Xt+1;jXt

Xt+1;j

⎞⎠ = ∑
t∈Rk

⎛⎝Xt XtX
�
t

1 X�
t

⎞⎠⎛⎝ μ̂j

α̂k;j·

⎞⎠ .

By one elementary operation and denoting |Rk|−1 ∑t∈Rk =: ∑̃t, we have⎛⎝∑̃tXt+1;jXt − ∑̃tXt+1;j∑̃tXt

∑̃tXt+1;j

⎞⎠ =

⎛⎝0 ∑̃tXtX
�
t − ∑̃tXt∑̃tX

�
t

1 ∑̃tX
�
t

⎞⎠⎛⎝ μ̂j

α̂k;j·

⎞⎠ (3.3.3)
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As can be seen in (3.3.3), the method to derive consistent estimators for μ̂j, α̂k;j· is to estimate a
somehow localized version of the autocovariance function. Define the conditional covariance as
Cov(Xt+h, Xt|Adt = Ãdk) = E

[
(Xt+h − E(Xt+h|Adt = Ãdk))(Xt − E(Xt|Adt = Ãdk))

�|Adt = Ãdk
]
=:

ΓXt|Adt=Ãdk
(h), where E(X|Adt = Ãdk) = E(X1Adt=Ãdk

)/P(Adt = Ãdk) if P(Adt = Ãdk) > 0, else
0. Following similar ideas and conditions as used in Theorem 3.3.2, as n → ∞ and convergence is
meant in probability, we obtained

|Rk|−1 ∑
t∈Rk

Xt+1;j → E[X1|Ad0 = Ãd],

|Rk|−1 ∑
t∈Rk

Xt;j → E[X0|Ad0 = Ãd],

|Rk|−1 ∑
t∈Rk

XtX
�
t − |Rk|−2 ∑

t1,t2∈Rk

Xt1
X�

t2
→ Cov(X0, X0|Ad0 = Ãdk),

|Rk|−1 ∑
t∈Rk

Xt+1;jXt − |Rk|−2 ∑
t1,t2∈Rk

Xt1+1;jXt2
→ Cov(X0, X1;j|Ad0 = Ãdk).

Consistency of the estimators (μ̂j, α̂k;j·) follows by using similar ideas as in Theorem 3.3.3. However,
the question about the number of parameters remains. For each state a d × d matrix needs to
be estimated and the number of states can be enormous, N = O((l + 1)d2

), where l denotes the
number of multi-edges. Even for moderate networks this approach becomes soon infeasible. That
is why in order to reduce the possible number of parameters, more structure is imposed on f .
In the above setting f is an arbitrary function. That means, for a given vertex any change in the
network could have a direct effect on the dependence structure of the corresponding time series.
However, it may seem reasonable to limit the effects in such a way that only changes ’close’ to the
given vertex may have a direct effect on the dependence structure of the corresponding time series.
For instance, lets say we have d persons, P1, . . . , Pd, who are in this example the vertices and each day
is a time point. If two persons talk to each other at a given day, an edge between the corresponding
vertices is drawn. A property at time t of persons Pj might be directly influenced by the persons
with whom Pj talked at time t − 1. However, it may not affect Pj’s property at time t if two other
persons talked to each other at time t − 1. Of course, this may affect the property of these persons
at time t which may affect Pj’s property at time t + 1. This leads to the following assumptions: The
time series corresponding to vertex j is only influenced by j’s in- and out-edges. Thismeans that the
j-th component is only influenced by the j-th row and j-th column of the adjacency matrix process
which results in the following structure for f :

f (X) = (g1(X1·, X·1), . . . , gd(Xd·, X·d))�, gj : R2d → R1×d. (3.3.4)
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With these assumptions the DSNAR(1)models reads as follows

Xt;j = gj(Adt−1;j·, Adt−1;·j)Xt−1 + εt;j, j = 1, . . . , d, t ∈ Z. (3.3.5)

In order to estimate gj, the same ideas used to estimate f under the general setting can be ap-
plied. However, for estimating gj it is only necessary to condition on the same state of the j-th
row and column of the adjacency matrix. This limits the number of possible states to which it
is necessary to condition on. Let d∗out(j) = ∑d

s=1 1{supt∈Z |Adt;js|>0} − 1{inft∈Z |Adt;js|>0} and d∗in(j) =

∑d
s=1 1{supt∈Z |Adt;sj|>0} − 1{inft∈Z |Adt;sj|>0} be the maximal changes in in-degree and out-degree re-

spectively. The number of parameters for component j is given by αj,1, . . . , αj,Nj ∈ Rd, Nj =

O(ld∗out(j)+d∗in(j)). For moderate-varying networks this could reduce the number of parameters dra-
matically. Larger networks usually come together with some form of sparsity, see for instance ex-
amples in Section 3.5 in Kolaczyk (2009). This means that a vertex has only a connection to a small
fraction of the other vertices. Consequently, a further reasonable assumption could be to assume
that only connections have an influence on the vertex’ time series. In the example with persons
P1, . . . , Pd this means that Pj’s property at time t is only affected by persons to whom Pj talked at
time t − 1; but not by persons to whom Pj did not talk at time t − 1. Thus, for state Adk;j·, Adk;·j
define Sj

k = {s ∈ {1, . . . , d} : Ãdk;js �= 0 or Ãdk;sj �= 0}, then the assumptions reads as

gj;s(Adk;j·, Adk;·j) = 0 for all s �∈ Sj
k. (3.3.6)

Especially for sparse networks, this highly reduces the number of parameters. Wehave∑d
j=1 ∑

Nj
k=1 |Sj

k| ≤
∑d

j=1((dout(j)+ din(j))d∗out(j)+d∗in(j)) parameters for f and d for μ. Asmentioned above, consistency of
the estimators can be derived in the samemanner without these assumptions leading to the general
setting discussed above. However, since the general settings is usually infeasible, it is not presented
in a theorem here. The following theorem summarizes the results under the assumptions (3.3.4)

and (3.3.6):

Theorem 3.3.3. Let X be a DSNAR(1) given by Xt = f (Adt−1)Xt−1 + εt, t ∈ Z, and X0, . . . , Xn and

Ad0, . . . , Adn−1 are observed. Furthermore, let (Ãdk;j·, Ãdk;·j), j ∈ {1, . . . , d} be a given state of the ad-

jacency matrix process Ad with ∑n−1
t=0 1{Adt;j·=Ãdk;j·,Adt;·j=Ãdk;·j} > 0. The process X fulfills the following

conditions:

i) Ad is a strictly stationary, {0, . . . , l}d×d-valued, l ∈ N fixed, α-mixing process fulfilling

∑∞
n=1 α(Ad, n)1/5 < ∞.

ii) The innovations ε are Rd-valued and i.i.d. with Eε0 = μ,Cov(ε0, ε0) = Σd, Eε0;i1 ε0;i2 ε0;i3 ε0;i4 =

κ4;i1,i2,i3,i4 < ∞ for all i1, . . . , i4 = 1, . . . , d. ε and Ad are independent.
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iii) Set B0 = Id, Bt,j = ∏
j
s=1 f (Adt−s). E|B0,j;i1,i2 |4 < ∞ for all j ∈ N, i1, i2 = 1, . . . , d,

∑h∈Z ∑∞
s1,s2=0 |Cov(Bh,s1 μ, B0,s2 μ)|+ ∑∞

s=0 |EBh,s+hΣdB�
0,s| < ∞ (component-wise).

iv) ∑∞
s=0

(
E
∣∣e�i (B0,sμ − EB0,sμ)

∣∣5)1/5
+ s
(

E
[
e�i (B0,sε1 − EB0,sμ)

]4)1/4
< ∞ for all i = 1, . . . , d

v) The measurable function f : Rd×d → Rd×d fulfills f (X) = (g1(X1·, X·1), . . . , gd(Xd·, X·d))�, where

gj : R2d → R1×d, j = 1, . . . , d.

vi) For all j = 1, . . . , d if the l-th and l + d-th components of the argument of gj are zero, then the l-th compo-

nent of gj is zero, i.e., gj(x1, . . . , xl−1, 0, xl+1, . . . , xd+l−1, 0, xd+l+1, . . . , x2d) = (y1, . . . , yl−1, 0, yl+1, yd)
�

Let gj(Ãdk;j·, Ãdk;·j) = aj,k be the quantity of interest. Define Rj
k = {r ∈ {0, . . . , n − 1} : Adr;j· =

Ãdk;j· and Adr;·j = Ãdk;·j} and Sj
k = {s ∈ {1, . . . , d} : Ãdk;js �= 0 or Ãdk;sj �= 0}. Then the process

X fulfills the equation Xt+1;j = ∑s∈Sj
k

aj,k;sXt;s + εt+1;j, t ∈ Rj
k, which results from using the least squares

approach in the following linear system:(
∑

r∈Rk

(Xr;s1
− 1

|Rk| ∑
v∈Rk

Xv;s1
)s1∈Sj

k
(Xr;s2

− 1
|Rk| ∑

v∈Rk

Xv;s2
)�

s2∈Sj
k

)
(α̃j,k;s)s∈Sj

k

=

(
∑

r∈Rk

(Xr+1;j −
1

|Rk| ∑
v∈Rk

Xv+1;j)(Xr;s −
1

|Rk| ∑
v∈Rk

Xv;s)s∈Sj
k

)
.

The estimator α̂j,k ∈ Rd is defined by α̂j,k;s = α̃j,k;s if s ∈ Sj
k and α̂jk;s = 0 if s �∈ Sj

k. Under the assumptions

i) to vi) we have α̂j,k = αj,k +OP((nP(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j))−1/2) for all j = 1, . . . , d, k =

0, . . . , n − 1. Furthermore, μ̂
j
= 1

|Rj
k |

∑r∈Rj
k

Xr+1;j − α̃j,kXr = μ
j
+OP((nP(Ad1;j· = Ãdk;j·, Ad1;·j =

Ãdk;·j))−1/2).

The results of Theorem 3.3.3 can be used to forecast the process X, where Xt = f (Adt−1)
�Xt +

εt. In order to forecast Xn+1, it is only necessary to estimate f at the state of Adn, here denoted
by Ãdn with f (Ãdn) = (α1,n, . . . , αd,n)

�. If Adn is observed, Xn+1 can be forecasted by X̂(1)
n+1 =(

∑s∈Sj
n

α̂j,n;sXn;s

)
j=1,...,d

+ μ̂. Since the innovation process is i.i.d., α̂j,n = αj,n +OP((nP(Ad1;j· =

Ãdk;j·, Ad1;·j = Ãdk;·j))−1/2), and μ̂ = μ +OP((nP(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j))−1/2), we have
E[(Xn+1 − X̂(1)

n+1)(Xn+1 − X̂(1)
n+1)

�|(Adn, Xn)] = Var((α̂j,n − αj,n)j=1,...,dXn + εn+1 − μ̂|(Adn, Xn)) =

OP((nP(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j))−1/2) + Σ. If Adn is not observed, Adn itself needs to be
predicted first. For instance, if Ad is Markovian, a prediction using an estimated transition matrix
based on Ad0, . . . , Adn−1 may be possible.
Even though these two assumptions decrease the number of parameters, this approach is not fea-
sible for large networks. The estimation error for each state of the adjacency matrix is of the order
O((nP(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j))−1/2). Since the number of states can grow faster than a
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polynomial growth, the probability to observe a given state, P(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j), may
decrease faster than polynomially. Thus, the number of observations needed to get adequate results
could be of exponential order to the number of vertices. That is why a different approach is pre-
sented in the following: The previous approach considered f as an arbitrary measurable function,
whereas the following approaches will parametrize f . First, consider the setting of (3.2.3). Thus,
each edge gets a fixed parameter resulting in the following representation of the DSNAR(1)model:
Xt = (α � Adt−1)

�Xt−1 + εt, t ∈ Z. This results in only ∑d
j=1 ∑d

s=1 1{supt∈Z |Adt;js|>0} ≤ d2 parame-
ters for f . Since in sparse network the number of edges grows linearly with the number of vertices,
this model can be parameterized in sparse networks withO(d) parameters. Again, the least squares
approach is used to derive consistent estimators for α and μ. However, an important difference
to the estimation in Theorem 3.3.3 is that for this model a global approach can be used. With this
parameterization of f the influence of each edge does not depend on the state of the adjacency ma-
trix. That is why in contrast to the estimation in Theorem 3.3.3, it is not necessary to condition on a
given state of the adjacency matrix. Since all observations can be used, this results in a more stable
estimation. Consider we have the observations X0, . . . , Xn and Ad0, . . . , Adn−1 and X is given by

Xt;s =
d

∑
j=1

αjs Adt−1;jsXt−1;j + εt;s, s = 1, . . . , d, t = 1, . . . , n. (3.3.7)

Let S̃s = {j ∈ {1, . . . , d} : supt∈Z Adt;js > 0} and define the |S̃s|-dimensional vectors Ys
t :=

(Adt;jsXt;j)j∈S̃s
, t ∈ Z, α̃·s = (αjs)j∈S̃s

so that Xt;s = α̃�·s Ys
t−1 + εt;s. Using the least squares approach

to estimate (α̃·s, μ
s
) leads to the following linear system:

⎛⎝∑n
t=1 Xt;sYs

t−1 − 1/n ∑n
t1,t2=1 Ys

t1−1Xt2;s

∑n
t=1 Xt;s

⎞⎠ =

⎛⎝0 ∑n−1
t=0 Ys

t (Y
s
t )

� − 1/n ∑n−1
t1,t2=0(Y

s
t1
)(Ys

t2
)�

n ∑n−1
t=0 (Y

s
t )

�

⎞⎠⎛⎝ μ̂
s

α̂·s

⎞⎠ .

(3.3.8)

Since αjs, j �∈ Ss, s = 1, . . . , d does not come into play in (3.3.7) and therefore, can be chosen
arbitrarily without changing the model, we set them to 0. In a finite sample where not every edge
with nonzero occurrence probability is observed, one is naturally only able to estimated those αjs

for which the corresponding edge is observed, i.e. for j, s ∈ 1, . . . , d : ∑n−1
t=0 Adt;js > 0. Consistency

of this estimator is shown in Theorem 3.3.4.

Theorem 3.3.4. Let Xt = (α� Adt−1)Xt−1 + εt be anR
d-valuedDSNAR(1) and it is observed X0, . . . , Xn

and Ad0, . . . , Adn−1. For s = 1, . . . , d define S̃s = {j ∈ {1, . . . , d} : supt∈Z Adt;js > 0}, Ys
t :=

(Adt;jsXt;j)j∈S̃s
, and α̃·s = (αjs)j∈S̃s

so that Xt;s = α̃·sYs
t−1 + εt;s. Furthermore, set As

t := diag(Adt;·s). If

1. Ad is a strictly stationary, Rd×d-valued, α-mixing process fulfilling ∑∞
n=1 α(Ad, n)1/5 < ∞,
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2. the innovations ε are Rd-valued and i.i.d. with Eε0 = μ,Cov(ε0, ε0) = Σd, Eε0;i1 ε0;i2 ε0;i3 ε0;i4 =

κ4;i1,i2,i3,i4 < ∞ for all i1, . . . , i4 = 1, . . . , d. ε and Ad are independent,

3. Bt,0 = Id, Bt,j = ∏
j
l=1(α � Adt−l) is set and E|As

0B0,j;i1,i2 |4 < ∞ for all j ∈ N, s, i1, i2 = 1, . . . , d,

∑h∈Z ∑∞
s1,s2=0 |Cov(As

hBh,s1 μ, As
0B0,s2 μ)|+∑∞

l=0 |EAs
hBh,l+hΣdB�

0,l(As
0)

�| < ∞ (component-wise),

4. and ∑∞
l=0

(
E
∣∣e�i (As

hBh,lμ − EAs
0B0,lμ)

∣∣5)1/5
+ l
(

E
[
e�i (As

hBh,lε1 − EAs
0B0,lμ)

]4)1/4
< ∞ for

all s, i = 1, . . . , d, h = 0, 1,

then the estimator given by (3.3.7) is consistent. We have, as n → ∞,

√
n

⎛⎝ (μ̂
s
− μ

s
)

(α̂�·s − α�·s )

⎞⎠ D→ N
⎛⎝0, Σss

⎛⎝(1 + E(Ys
1)

�ΓYs(0)−1EYs
1) E(Ys

1)
�ΓYs(0)−1

ΓYs(0)−1EYs
1 ΓYs(0)−1

⎞⎠⎞⎠ . (3.3.9)

Furthermore, the following covariances are obtained for k ∈ {1, . . . , d}, as n → ∞:

Cov(
√

n(α̂·s − α·s),
√

n(α̂·k − α·k)) → ΣskΓYs(0)−1ΓYsYk(0)ΓYk(0)−1,

Cov(
√

n(α̂·s − α·s),
√

n(μ̂
k
− μ

k
)) → ΣskΓYs(0)

−1ΓYsYk(0)ΓYk(0)−1EYk
1 ,

and

Cov(
√

n(μ̂
s
− μ

s
),
√

n(μ̂
k
− μ

k
)) → Σsk(1 + E(Yk

1 )
�ΓYs(0)

−1ΓYsYk(0)ΓYk(0)−1EYk
1 ).

This can be used to forecast the process X, where Xt = (α� Adt−1)
�Xt−1 + εt. If Adn is observed,

Xn+1 can be forecasted by X̂(1)
n+1 = (α̂� Adn)�Xt. Since the innovation process is i.i.d. and α̂ = α +

OP (1/
√

n), we have Var(Xn+1 − X̂(1)
n+1|(Adn, Xn)) = Var(((α̂ − α)� Adn)Xn + εn+1|(Adn, Xn)) =

O(1/n) + Σ.
Even though the parameterization used in Theorem 3.3.4 reduces the number of parameter to

O(d2) or O(d) for sparse networks, respectively, this may be too large to tackle very large networks
such as social media networks as Twitter or Facebook. Those networks often contain more than mil-
lions of vertices, whereas the number of observed time points is considerably small. Consequently,
a more radical approach needs to be applied here in order to reduce the number of parameters.
Here we adapt the idea of model (2.1) in Zhu et al. (2017). The model reads as follows:

Xt = αXt−1 + βh(Adt−1)Xt−1 + μ + εt, (3.3.10)

where α, β, μ ∈ R and {εt, t ∈ Z} is an i.i.d. innovations process with Eε1 = 0 and Varε1 = Σ. The
function h : Rd×d → Rd×d is assumed to be known. Thus, some prior knowledge is put into the
model. For instance, if the vertices are considered as cities then h can be in such a way that each

3 Time Series Modeling on Dynamic Network
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edge is assigned to some distance between these cities, see Knight et al. (2016, Section 3.1). Another
example for h is given by choosing h as follows: h(X)j· = (∑d

s=1 Xsj)
−1X·j which is closely related

to Linear-In-Means models for peer effects, see Manski (1993). This means that if two edges go into
vertex j both have an impact of 0.5β and if we have four edges, each one has an impact of 0.25β. In
order to better visualize the parameters, here the commonmean of the innovation is written directly
in the equation for Xt. Since each vertex shares the same parameters, the least square approach can
be used in the following way:

argminα̂,β̂,μ̂

n

∑
t=1

‖Xt − αXt−1 − βh(Adt−1)Xt−1 − μ1‖2
2

=argminα̂,β̂,μ̂

n

∑
t=1

d

∑
s=1

(
Xt;s − αXt−1;s − βh(Adt−1)s·Xt−1 − μ

)2 . (3.3.11)

Define Yt−1;s = h(Adt−1)s·Xt−1. This results in the following linear system:

n

∑
t=1

d

∑
s=1

⎛⎜⎜⎝
Xt−1;sXt;s

Yt−1;sXt;s

Xt;s

⎞⎟⎟⎠ =
n

∑
t=1

d

∑
s=1

⎛⎜⎜⎝
X2

t−1;s Xt−1;sYt−1;s Xt−1;s

Xt−1;sYt−1;s Y2
t−1;s Yt−1;s

Xt−1;s Yt−1;s 1

⎞⎟⎟⎠
⎛⎜⎜⎝

α̂

β̂

μ̂

⎞⎟⎟⎠ . (3.3.12)

The main difference to the previous models is evident in this linear system. The number of pa-
rameters is fixed to 3 and is independent from the number of vertices. Furthermore, it can be seen
that a more accurate estimation can be achieved by an increasing number of time points as well
as by an increasing number of vertices (as long as there is not a perfect correlation between the
components of Xt). The benefit of a larger network is higher the less the components of the time
series are correlated. The correlation of the components is mainly influenced by the function h.
If this function has similar properties as the function f in Assumption v) in Theorem 3.3.3 than
sparsity of the network could result in less correlated components. For this model it is reason-
able to consider d → ∞. However, the setting d → ∞ requires another definition of stationarity.
This should not be the scope of this work (for this refer to section 2.3 in Zhu et al. (2017)). Since
an increasing number of vertices is only appropriate for such reduced models as given in (3.3.10)

and not for the previous discussed models, this work keeps the setting of a fixed number of ver-
tices and only the number of time points increases. Note further that the model can be written
as: Xt = (αId + βh(Adt−1))Xt−1 + μ + εt. Under some conditions we get the following stationary
solution:

Xt =
∞

∑
j=0

[
j

∏
s=1

(αId + βh(Adt−s))

]
(μ + εt). (3.3.13)

3.3 Statistical Results for Doubly Stochastic Network Processes
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Hence, for the mean we have EXt = ∑∞
j=0 E

[
∏

j
s=1(αId + βh(Adt−s))

]
μ. The mean as well as the

autocovariance structure depends on the underlying network. So, despite all components of the
time series sharing the same parameters, the mean of the components can differ. The linear system
(3.3.12) gives consistent estimators for t → ∞ which is shown in Theorem 3.3.5.

Theorem 3.3.5. Let Xt = αXt−1 + βh(Adt−1)Xt−1 + μ + εt be a Rd-valued DSNAR(1). It is observed

X0, . . . , Xn and Ad0, . . . , Adn and h is assumed to be known. Furthermore, define Yt = h(Adt)Xt. If

1. Ad is a strictly stationary, Rd×d-valued, α-mixing process fulfilling ∑∞
n=1 α(Ad, n)1/5 < ∞,

2. the innovations ε are Rd-valued and i.i.d. with Eε0 = μ,Cov(ε0, ε0) = Σd, Eε0;i1 ε0;i2 ε0;i3 ε0;i4 =

κ4;i1,i2,i3,i4 < ∞ for all i1, . . . , i4 = 1, . . . , d. ε and Ad are independent,

3. Bt,0 = Id, Bt,j = ∏
j
s=1(αId + βh(Adt−s)), and E|B0,j;i1,i2 |4 < ∞ for all j ∈ N, i1, i2 = 1, . . . , d,

∑h∈Z ∑∞
s1,s2=0 |Cov(Bh,s1 μ, B0,s2 μ)|+ ∑∞

s=0 |EBh,s+hΣdB�
0,s| < ∞ (component-wise),

∑∞
s=0

(
E
∣∣e�i (Bh,sμ − EB0,sμ)

∣∣5)1/5
+ ∑∞

s=1 s
(

E
[
e�i (Bh,sε1 − EB0,sμ)

]4)1/4
< ∞ for all i =

1, . . . , d, h = 0, 1 and

4. B̃t,0 = βh(Adt), B̃t,j = βh(Adt)∏
j
s=1(αId + βh(Adt−s)), E|B̃0,j;i1,i2 |4 < ∞ for all j ∈ N, i1, i2 =

1, . . . , d,

∑h∈Z ∑∞
s1,s2=0 |Cov(B̃h,s1 μ, B̃0,s2 μ)|+ ∑∞

s=0 |EB̃h,s+hΣdB̃�
0,s| < ∞ (component-wise),

∑∞
s=0

(
E
∣∣e�i (B̃h,sμ − EB̃0,sμ)

∣∣5)1/5
+ ∑∞

s=1 s
(

E
[
e�i (B̃h,sε1 − EB̃0,sμ)

]4)1/4
< ∞ for all i =

1, . . . , d, h = 0, 1,

then the estimator given by (3.3.12) is consistent. We have, as n → ∞,

√
n

⎛⎜⎜⎝
α̂ − α

β̂ − β

μ̂ − μ

⎞⎟⎟⎠ D→ N

⎛⎜⎜⎝0,

⎛⎜⎜⎝
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞⎟⎟⎠
⎞⎟⎟⎠ , (3.3.14)

where, denoting ∑̃s := 1/d ∑d
s=1 and ∑̃s1,s2

:= 1/d2 ∑d
s1,s2=1,

σ11 =

(
˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2 − ( ˜∑
s

EY2
1;s − ( ˜∑

s
EY1;s)

2)−1( ˜∑
s

EY1;sX1;s − ( ˜∑
s

EX1;s)(
˜∑
s

EY1;s))

)−2

×
(

˜∑
s1,s2

Σs1,s2 [E(X1;s1
X1;s2

) + ( ˜∑
s

EY2
1;s − ( ˜∑

s
EY1;s)

2)−1E(Y1;s1 X1;s2
)

+( ˜∑
s

EY2
1;s − ( ˜∑

s
EY1;s)

2)−2E(Y1;s1Y1;s2)]

)
,
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σ22 =

(
˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2 − ( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1( ˜∑
s

EY1;sX1;s − ( ˜∑
s

EX1;s)(
˜∑
s

EY1;s))

)−2

×
(

˜∑
s1,s2

Σs1,s2 [E(Y1;s1Y1;s2) + ( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1E(Y1;s1 X1;s2
)

+( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−2E(X1;s1
X1;s2

)]

)
,

σ12 =

(
˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2 − ( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1( ˜∑
s

EY1;sX1;s − ( ˜∑
s

EX1;s)(
˜∑
s

EY1;s))

)−1

×
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2 − ( ˜∑
s

EY2
1;s − ( ˜∑

s
EY1;s)

2)−1( ˜∑
s

EY1;sX1;s − ( ˜∑
s

EX1;s)(
˜∑
s

EY1;s))

)−1

×
(

˜∑
s1,s2

Σs1,s2 E(Y1;s1 X1;s2
)(1 + ( ˜∑

s
EX2

1;s − ( ˜∑
s

EX1;s)
2)−1( ˜∑

s
EY2

1;s − ( ˜∑
s

EY1;s)
2)−1)

−( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1E(X1;s1
X1;s2

)− ( ˜∑
s

EY2
1;s − ( ˜∑

s
EY1;s)

2)−1E(Y1;s1Y1;s2)

)
,

σ33 = 1/d2 ∑d
s1,s2

Σs1,s2 ,

σ13 =

(
˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2 − ( ˜∑
s

EY2
1;s − ( ˜∑

s
EY1;s)

2)−1( ˜∑
s

EY1;sX1;s − ( ˜∑
s

EX1;s)(
˜∑
s

EY1;s))

)−1

×
(

˜∑
s1,s2

Σs1,s2 [EX1;s1
+ ( ˜∑

s
EY2

1;s − ( ˜∑
s

EY1;s)
2)−1EY1;s1 ]

)
,

σ23 =

(
˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2 − ( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1( ˜∑
s

EY1;sX1;s − ( ˜∑
s

EX1;s)(
˜∑
s

EY1;s))

)−1

×
(

˜∑
s1,s2

Σs1,s2 [EY1;s1 + ( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1EX1;s1
]

)
.

Note that if the components ofXt are not fully linear dependent, then terms of the asymptotic vari-
ance such as 1/d2 ∑d

s1,s2
Σs1,s2 decrease with higher d. Hence, asmentioned previously, this approach

benefits — as long as the components are not fully correlated— from an increasing dimension in
the sense of a decreasing variance. Under some conditions the variance could decrease with rate
O(1/d).

Lemma 3.3.6 gives an easy-to-check criteria, whether a given DSNAR(1)model fulfills themoment
conditions of the Theorem 3.3.1 to 3.3.5. However, this condition is more restrictive since it implies
an exponential decay of (∏n

s=1 f (Ad−s))n. The models used in the numerical examples fulfill this
criteria.

3.3 Statistical Results for Doubly Stochastic Network Processes

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



82

Lemma 3.3.6. Let Xt = f (Adt−1)Xt−1 + εt be a DSNAR(1) process as in 3.2.2. If there exists a q ≥ 1

so that E log ‖∏
q
j=1 f (Ad1)‖ < 0 and Ad is α-mixing with ∑∞

n=0 α(Ad, n)1/2 < ∞, then the moment

conditions iii), iv) of Theorem 3.3.3, 3), 4) of Theorem 3.3.4 and 3), 4) of Theorem 3.3.5 hold.

In practice we face the situation that we have observation of some process but a priori it is usually
unknown which models fits best to the process. We have that model (3.3.7) is more general than
model (3.3.10) and model (3.3.5) is even more general. Hence, the more general models apply to
more processes. However, as mentioned above the number of parameters of these more general
models can be large, especially for model (3.3.5). Thus, the usual bias-variance dilemma occur, see
section 7.2 in Friedman et al. (2017)). Hence, the bias of the more general models may be smaller
but the variance can increase significantly. If the forecasting performance is of interest then cross-
validation, see section 7.10 in Friedman et al. (2017), can be used to identify which of these three
model approaches gives the best forecasting performance regarding some metric, e.g. the mean-
squared-error.
Notice that all these approaches are based on observations of the process X as well as observations
of the network Ad. Hence, if only observations of X are available these methods cannot be applied.
However, as seen in the example in section 3.2, the autocovariance function of X cannot be used
in general to identify a DSNAR(1)model. Furthermore, as already mentioned, a DSNAR(1)model
does not fit into the framework of Hidden Markov models. Thus, the corresponding techniques
cannot be applied here either. It remains to consider X as a standardmultivariate time series, which
may be tackled by VAR-models. However, VAR-models cannot benefit from the additional structure.
In section 3.4 we investigate the finite sample performance of these forecasting methods under the
precondition that the network is observed.

3.4 Numerical Examples
In this Section the one-step-forecasting error for Xn+1 of the methods presented in Section 3 are
compared based on observations X1, . . . , Xn and Ad1, . . . , Adn. In the low-dimensional examples,
the methods of Theorem 3.3.3, here denoted as NP.NAR, as well as of Theorem 3.3.4, here denoted as
FIX.NAR, are compared with the approach using standard VAR models. The standard VAR model
is not able to use the observations of Ad, which makes it in some sense an unfair competition.
However, the aim is here to see what the benefit is of using this additional structure. Some of these
methods presented in Section 3 have many parameters. Nevertheless, under appropriate conditions
they should clearly outperform the VAR model. Since the method of Theorem 3.3.5, here denoted
as RAD.NAR, uses a priori knowledge, it is only used in the last example.
We begin with the example given in section 3.2 by (3.2.5). Hence, X is a 3-dimensional time series,
where the first two components are whites noise and the third component is either influenced by
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the first or by the second component, see Section 2 for details. NP.NAR as well as FIX.NAR are
valid. The one-step-forecasting error based on X1, . . . , Xn and Ad1, . . . , Adn is compared with the
forecasting error using VAR and is displayed in Table 3.1 for various sample sizes n. It can be seen
that in this example there is not much of a difference between NP.NAR and FIX.NAR. Hence, the
disadvantage of the additional parameters in NP.NAR can be handled well in this low-dimension
example. However, NP.NAR as well as FIX.NAR has their difficulties for n = 100. For this sample
size these methods are not able to reduce the forecasting error to the innovations variance. Nev-
ertheless, both clearly benefit from the additional structure and are able to give a more accurate
forecast for the third component than the VAR approach. Hence, using only the information given
by the autocovariance function does not give a good forecast for this process.

Table 3.1: Mean squared one-step forecasting error for X̂n+1 based onX1, . . . , Xn and Ad1, . . . , Adn of process
(3.2.5).

n 100 200 400
Component 1 2 3 1 2 3 1 2 3

VAR 1.1 1.0 1391.0 1.0 1.0 1129.0 1.0 1.0 1055.4
FIX.NAR 1.0 1.0 34.6 1.0 1.0 1.0 1.0 1.0 1.0
NP.NAR 1.1 1.0 23.6 1.0 1.0 1.0 1.0 1.0 1.0

In the second example, a network with 4 vertices is considered. The adjacency matrix process Ad

is a Markovian process and the edges are independent from each other. The process Ad is given by

(
P(Adt;ij = 1|Adt−1;ij = 1)

)
i,j=1,...,d =

⎛⎜⎜⎜⎜⎜⎝
0.95 0.70 0.99 0

0 0.95 0.70 0

0.99 0.50 0.95 0.95

0.30 0 0 0.95

⎞⎟⎟⎟⎟⎟⎠ ,

(
P(Adt;ij = 1|Adt−1;ij = 0)

)
i,j=1,...,d =

⎛⎜⎜⎜⎜⎜⎝
0.05 0.10 0.01 0

0 0.05 0.30 0

0.01 0.50 0.05 0.05

0.30 0 0 0.05

⎞⎟⎟⎟⎟⎟⎠ . (3.4.1)

The edges have fixed weights α =

⎛⎜⎜⎜⎜⎜⎝
0.25 0.75 0 0

0 0.25 0.75 0

0 0 0.25 0.75

0.75 0 0 0.25

⎞⎟⎟⎟⎟⎟⎠ and the time series X is an DSNAR(1)

3.4 Numerical Examples
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process given by

Xt = (α � Adt−1) Xt−1 + εt, ε1 ∼ N
(
(−1, 4,−9, 16)�, I4

)
. (3.4.2)

A realization of the network as well as of the time series is displayed in Figure 3.4. Furthermore,
the sample autocovariance function is displayed in Figure 3.4, which indicates that X possesses a
lot of structure on which the forecasting can rely on. The edges (3, 1) and (1, 3) have a weight
of 0, hence, whether they are present or not, they do not influence the time series X. However,
the number of possible states is increased which may decrease the performance of the NP.NAR
approach. Due to the relative large mean of the innovations of the 4th component regarding the
1st component, μ

4
= 16 versus μ

1
= 1, the presence of an edge (4, 1) at t − 1 has a strong influence

on Xt;1. That is why this component has the largest variance of the four components. NP.NAR as
well as FIX.NAR are valid and a one-step-forecast is performed. The one-step-forecasting error is
displayed in Figure 3.3 for n = 500 and the squared forecasting error for each component is given
by Table 3.2.

Table 3.2: Mean squared one-step forecasting error for X̂n+1 based onX1, . . . , Xn and Ad1, . . . , Adn of process
(3.4.2).

n 250 500 1000
Component 1 2 3 4 1 2 3 4 1 2 3 4

VAR 31.1 5.5 6.0 6.0 29.8 5.2 6.2 5.8 29.6 4.6 5.9 5.3
FIX.NAR 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NP.NAR 10.9 2.6 32.8 1.1 3.3 1.1 3.7 1.0 1.3 1.1 1.7 1.0

As can be seen inTable 3.2 as well as in Figure 3.3, FIX.NAR performs best and thismethod is able to
reduce the forecasting error to the variance of the innovations. NP.NAR has a much larger variance
for component 1 and 3 especially. Figure 3.3 gives some insight, the forecast based on NP.NAR has
many outliers for components 1 and 3 , whereas the 50% area is almost as tight as it is for component
2 and 4. The reason for this is that additional zero-weighted edges (3, 1) and (1, 3) can occur. On
the one side, they increase the number of states. Whereas there are 8 different states for component
2 and 4 which results in 12 parameters, components 1 and 3 have 32 different state which results in
72 parameters. On the other side, the edges (3, 1) and (1, 3) change their current state only with low
probability and consequently it is possible that the state Adn is not often observed. This could result
in a poor forecast especially for smaller sample sizes as seen in Table 3.2. Nevertheless, NP.NAR is
able to benefit from the additional structure and can give a more accurate forecast than VAR.

3 Time Series Modeling on Dynamic Network
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Figure 3.3: One-step-forecasting error for X̂501 based on X1, . . . , X500 and Ad1, . . . , Ad500 of process (3.4.2).
The crosses display the mean forecasting error.

In the next example a DSNAR(1) process X is investigated where f is not given by fixed edge
weights. A network with 6 vertices is considered; the edges are independent from each other and
Ad is a Markovian process given by

(
P(Adt;ij = 1|Adt−1;ij = 1)

)
i,j=1,...,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0.25 0 0 0

0 1 0.80 0 0 0

0 0 1 0.80 0 0

0 0 0 1 0.75 0.75

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(
P(Adt;ij = 1|Adt−1;ij = 0)

)
i,j=1,...,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0.25 0 0 0

0 1 0.20 0 0 0

0 0 1 0.80 0 0

0 0 0 1 0.10 0.05

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.4.3)

The components of the innovations process are independent and ε1;1 ∼ exp(1/5), ε1;2 ∼ − exp(1/5)

and ε1;j ∼ N (0, 1), j = 3, . . . , 6. The time series X is given by

Xt;j = f (Adt−1;ij)Xt−1;i + εt;j, where f (X) =

⎛⎜⎜⎜⎝
g1(X1·, X·1)

...
gd(Xd·, X·d)

⎞⎟⎟⎟⎠ (3.4.4)

3.4 Numerical Examples
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and the j-th row of f is given by

gj : R2d → R1×d, gj(Xj·, X·j) =

⎧⎪⎨⎪⎩X·j − ej , ∑s �=j Xjs > 0,

X·j − 0.05ej , else,
j = 1, . . . , d.

A realization of the time series X as well as of the network is shown in Figure 3.6. The function f

works in the following way: As long there is no edge to another vertex, the corresponding time series
charges up load, component 1 positively and component 2 negatively and the other components
keep their charge (or more precisely 95% of it plus some noise). If there is now an edge to another
vertex present, the load is transferred to this vertex. These edges are directed and the load flows
in the direction of the edges. Hence, the load of components 1 and 2 flows through 3 and 4 to
the end vertices 5 and 6. The function f fulfills the requirements of NP.NAR but not the ones of
FIX.NAR. Nevertheless, a forecasting of Xn+1 is performed with NP.NAR, FIX.NAR and VAR based
on X1, . . . , Xn and Ad1, . . . , Adn. The one-step-forecasting error is displayed in Figure 3.5 and the
mean squared forecasting error for each component is given byTable 3.3. Notice that the innovations
of the first two components are exponentially distributed with Var(ε1;1) = Var(ε1;2) = 25. That is
why the median forecasting error for these components is not near 0, only the mean forecasting
error is; in Figure 3.5 the mean is displayed by a cross. The valid method NP.NAR performs best
and is able to reduce the forecasting error near the order of the innovations variance. Components
3 and 4 have more possible states than the other components which explains the higher forecast
error for those components. Components 5 and 6 fit in the framework of FIX.NAR and for these
components themethod is able to reduce the forecasting variance to the variance of the innovations.

Table 3.3: Mean squared one-step forecasting error for X̂n+1 based on X1, . . . , Xn and Ad1, . . . , Adn of pro-
cess (3.4.4). Note that the innovations variance is (25, 25, 1, 1, 1, 1).

n 250 500 1000
VAR FIX.NAR NP.NAR VAR FIX.NAR NP.NAR VAR FIX.NAR NP.NAR

1 125 122 27 120 118 27 111 110 26
2 101 99 28 103 103 26 107 107 27
3 212 34 4 226 33 1 212 32 1
4 112 74 14 119 81 1 109 76 1
5 63 1 1 71 1 1 64 1 1
6 41 1 1 39 1 1 41 1 1

3 Time Series Modeling on Dynamic Network
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Figure 3.4: The upper figure presents a realization of the network of the example given by (3.4.1) and a real-
ization of the time series X given by (3.4.2). Red dots indicate the current time point. This figure
contains animation only visible on screen. The lower graphic presents the sample autocovariance
function of X.
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Figure 3.5: One-step-forecasting error for X̂501 based on X1, . . . , X500 and Ad1, . . . , Ad500 of process (3.4.3).
The crosses display the mean forecasting error. Note that the innovations of component 1 and 2
posses an exponential distribution.

Figure 3.6: Realization of the network of the example given by (3.4.3); realization of the time series X given
by (3.4.4). Red dots indicate the current time point. This figure contains animation only visible
on screen.

In the next example a Separable Temporal Exponential Random Graph Model (STERGM), see
Krivitsky andHandcock (2014) and also Krivitsky andHandcock (2016) for the used R package tergm,
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with d = 1000 vertices is considered. Two types of networks are considered: a slow-varying network
(dissolution-coefficient 8, formation-coefficient−13.3) and a fast-varying network (dissolution-coefficient
4, formation-coefficient−9.3). Both networks have a mean density of 0.005 which results in around
5000 edges. The slow-varying network has about 350 edge changes from t = 1 to t = 100, whereas
the fast-varying network has about 8500 edge changes from t = 1 to t = 100. These two networks
differ mainly in their dynamics, whereas their inner structure is similar as can be seen, for instance,
in the out-degree distribution given in Figure 3.7. The out-degree distribution can be approximated
by a normal distribution with a mean of 5 and a standard variation of 2.2. The in-degree distribu-
tions has a similar structure. Hence, no vertex takes a special role, which is why a homogeneous
model seems appropriate. Thus, every component of the time series has the same parameters. The
time series is given by

Xt = 0.15Ad�t−1Xt−1 + 5 + εt, where ε1 ∼ N (0, I1000). (3.4.5)
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Figure 3.7: Out-degree-distributions of the slow-varying and fast-varying STERGMs with d = 1000 and den-
sity 0.005.

This setting is suited forRAD.NAR and it is used here with g(X) = X�. Furthermore, themethod
FIX.NAR is applied for forecasting. Due to the high-dimensional setting (d = 1000 regarding n =

100) a VAR approach cannot be applied. Instead, a reduced VAR approach is used. The model
structure (3.4.5) implies that the components of non-connected vertices are independent or more
precisely only components i ∈ {s ∈ {1, . . . , d} : supk≤t Adk;sj > 0} can influence X·;j. Thus, to
perform a forecast of Xn;j, j = 1, . . . , d based on X1, . . . , Xn and Ad1, . . . , Adn, we only consider

3.4 Numerical Examples
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(X1;s, . . . , Xn;s)s∈Sj , where Sj := {s ∈ {1, . . . , d} : maxt Adt;sj > 0}. Hence, this VAR approach
uses the observed network to reduce the number of parameters. However the network dynamics
cannot be appropriately captured by this VAR approach. Since the components are homogeneous,
the average error over all components is considered. The average squared forecasting error for X101

and X201 is displayed in Table 3.4. Since in fast-varying networks more edges occur than in slow-
varying networks, in the fast-varying network setting FIX.NAR as well as reduced VAR have more
non-zero parameters. That is why these approaches perform considerably worse in fast-varying
networks. Besides that, since this setting is tailor-made for the RAD.NAR, it performs best and this
approach is able to reduce the forecasting error of size of the innovation error. Notice further that
RAD.NAR is the only presented model which benefits from the high number of vertices. FIX.NAR
is consistent in this setting. However, FIX.NAR has many more parameters than RAD.NAR, which
is why it performs worse for this small sample size. Notice that in this network every edge can occur
at some time point. Thus, if a longer time period is observed, the number of adjacent vertices to
a given vertex j increases; St;j = ∑d

s=1 1{supk≤t Adk;sj>0} is monotonic in t and converges to d − 1 (if
self-loops are not possible). In the fast-varying network 14 adjacent vertices are observed on average
over the time period t = 1, . . . , 100, whereas 23 adjacent vertices are observed over the time period
t = 1, . . . , 200. Hence, a larger time period may increase the number of non-zero parameters for
FIX.NAR and reduced VAR. That could explain why FIX.NAR does not benefit from the doubled
sample size.

Table 3.4: Average one-step-ahead forecasting error, 1/d ∑d
j=1 E(X̂n+1;j − Xn+1;j)

2, for X̂n+1 based on
X1, . . . , Xn and Ad1, . . . , Adn of process (3.4.5).

network fast-varying network slow-varying network
n 100 200 100 200

reduced VAR 5.2 5.1 1.4 1.6
FIX.NAR 3.5 3.9 1.2 1.2
RAD.NAR 1.0 1.0 1.0 1.0

3.5 Real Data Example
Here We consider data given by a play of the German card game Doppelkopf.1 It is played by four
players and themain focus here is on the overall score. Hence, we are not going into detail regarding
the rules of the game and how to play it, especially, because the rules differ from region to region.
The important aspect is that it is played in teams. The teams are chosen by the cards and therefore
the teams are chosen randomly. A team wins or loses together and each member of the team gets

1For more details on Doppelkopf refer to http://www.doko-verband.de/Regeln__Ordnungen.html, https://de.
wikipedia.org/wiki/Doppelkopf and https://en.wikipedia.org/wiki/Doppelkopf

3 Time Series Modeling on Dynamic Network
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the same score (displayed in the game column) which is added by winning and subtracted by losing.
Thus, the scoreboard displays also the information of who played with whom. Notice that it is
possible that one player plays versus three others.

Table 3.5: Scoreboard of a play of the German card game ’Doppelkopf ’
# Hinnerk Maddy Jonas Annika game
1 2 -2 2 -2 2
2 8 -8 8 -8 6
3 18 -38 18 2 10
4 14 -42 14 14 4
5 4 -12 4 4 10
6 0 -8 8 0 4
7 -12 -20 20 12 12
8 -20 -28 28 20 8
9 -27 -21 35 13 7
10 -29 -23 37 15 2
11 -25 -27 41 11 4
12 -27 -25 43 9 2
13 -3 -33 35 1 8
14 -7 -29 39 -3 4
15 -1 -23 45 -21 6
16 0 -24 44 -20 1
17 -16 -40 60 -4 16
18 -20 -36 56 0 4
19 -22 -34 58 -2 2
20 -21 -33 57 -3 1
21 -25 -29 61 -7 4

Here the score given by Table 3.5 is considered as a multivariate time series (Xt) and the aim is
to predict the score. Figure 3.8 presents the process in the usual way of time series and network.
Hence, this figure shows all the given observations of (Xt) and (Adt). In order to be a valid score,
the score of all player has to be sum up to zero, hence ∑d

s=1 Xt;s = 0 for all t. Thus, even though
we observe a 4 dimensional time series, it is only of 3 dimensions. For modeling the score with an
DSNAR(1), denoted asNAR, we use this relation and set Xt;4 = −∑3

s=1 Xt;s. The other components,
Xt;j, j = 1, 2, 3, are given by

Xt;j = Xt−1;j + ∑
s �=j

αjs Ãdt,jsXt−1;j + μj + εt;j, (3.5.1)

where Ãdt,ij = #team members (usually 2) if player i and player j are on the same team for game t

and Ãdt,ij = −#opponents if they are opponents for game t. This model has 9 + 3 parameters. In

the same manner we consider the following VAR model given by Xt;4 = −∑3
j=1 Xt;j and

3.5 Real Data Example
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Figure 3.8: Doppelkopf data, 3.6, in time series representation. Blue edges indicate that the connected vertices
are on the same team, whereas red edges indicate that the connected vertices are opponents. This
figure contains animation only visible on screen.

Xt;j = Xt−1;j + ∑
s �=j

ajsXt;s + μs + εt;j, j = 1, 2, 3. (3.5.2)

This VAR model also has 12 parameters and as in the DSNAR model the coefficient determining
the influence of Xt−1;j on Xt,j is set to 1 for all j. Furthermore, a structural DSNAR(1) is considered,
which is given by

Xt = Xt−1 +

⎛⎜⎜⎜⎜⎜⎝
Adt;12 Adt;13 Adt;14

Adt;21 −Adt;24 −Adt;23

−Adt;34 Adt;31 −Adt;32

−Adt;43 −Adt;42 Adt;41

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

et;1

et;2

et;3

⎞⎟⎟⎠ =: Xt−1 + f (Adt)et, (3.5.3)

where Adt,ij = 1 if player i and player j are on the same team and else Adt,ij = 0. This model can be
written as Zt = Xt − Xt−1 = f (Adt)et. Hence, this model can be seen as DSNMA(0)model and the
parameters of this model are the innovation’s mean. This model is denoted as NMA. As a further
benchmark we consider a forecast by two simple approaches, X̂t+1 = Xt, denoted as NAIV, and

3 Time Series Modeling on Dynamic Network
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X̂t+1 = Xt + 1/tXt, denoted as NAIV2. The forecast results are given in Table 3.6 and the forecast
error is given in Table 3.7. The network time series models, NAR and NMA, give on average for
these 3 time points considered the best forecast. The NAIV approach is also upfront, whereas VAR
performs worse. However, the sample size is considerably small so that a reliable statement cannot
be made. Note that the prediction X̂t+1 given by the NAR and NMA uses the network structure at
t + 1. Prediction may not be the most interesting question to answer for this setting. Of interest is
also the question who plays well with whom. Such questions can be easily answered by interpreting
the parameters of the network time series models. For NMA, (3.5.3), we have Eet;1 =: μ(1,2),−(3,4)

giving the playing performance of player 1 and 2, whereas, due to the symmetry of the game score,
−Eet;1 = −μ(1,2),−(3,4) represents the playing performance of player 3 and 4. Similarly, μ(1,3),−(2,4)

represents the playing performance of player 1 and 3 and withminus sign for players 2 and 4. Based
on the given data we obtain μ̂(1,2),−(3,4) = −9.5, μ̂(1,3),−(2,4) = 2, μ(1,4),−(2,3) = −2.75.

Table 3.6: Predicted scores of a play of the German card game ’Doppelkopf ’ at t = 19, 20, 21.
t = 19 t = 20 t = 21

Player 1 2 3 4 1 2 3 4 1 2 3 4
Xt -26 -30 62 -6 -22 -34 58 -2 -22 -34 58 -2
NAIV -22 -34 58 -2 -22 -34 58 -2 -20 -36 56 0
NAIV2 -23 -36 61 -2 -23 -36 61 -2 -21 -38 59 0
VAR -22 -35 60 -3 -22 -36 60 -3 -20 -35 57 -1
NAR -23 -33 60 -3 -24 -33 60 -4 -22 -35 59 -2
NMA -25 -31 61 -5 -25 -31 61 -5 -23 -33 59 -3

Table 3.7: The forecast error of a play of the German card game ’Doppelkopf ’ at t = 19, 20, 21., ‖Xt − X̂t‖2,
is given in the lower table.

NAIV NAR NAIV2 VAR NMA
19 8 5 8 8 3
20 0 3 4 3 6
21 4 1 5 3 2

3.5 Real Data Example
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3.6 Conclusions
In this chapter the doubly stochastic framework has been used to model a multivariate time series
on a dynamic network with static vertices. In this framework network linear processes and network
autoregressive processes have been defined. Independence of the time series’ innovations and the
network enables the possibility to model time series and network separately. This gives flexibility
in the sense that one is not limited to a specific network model. By restricting to α-mixing net-
works this framework becomes feasible and statistical results can be derived. For instance, based
on observations of the time series and the network consistency of estimators for the parameters of
a network AR(1) model is shown. These estimators can be used to do forecasting and, as can be
seen in the numerical examples, the benefit of using the additional structure can be quite large. It
is further possible to interpret the parameters to gain new insight as can be seen in the real data
example.

3 Time Series Modeling on Dynamic Network
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3.7 Proofs
Proof of Lemma 3.2.2. (i) and (ii) gives the existence of the L2-Limit of Xt, so that it can be written as
Xt = ∑∞

j=0 Bt,jεt−j. We have Bt,j = fj(Adt−1, . . . , Adt−j) and {εt, t ∈ Z} is i.i.d and independent to
the stationary process {Adt, t ∈ Z}. Thus, {εt, t ∈ Z} and (vec(Bt,j, j ∈ N))t∈Z are independent.
We have μ

x
= ∑∞

j=0 EB0,jμ and for the autocovariance function

ΓX(h) =
∞

∑
j=0

∞

∑
s=0

(
E
(

Bt+h,jεt+h−jε
�
t−sB�

t,s

)
− E

(
Bt+h,jμμ�Bt,s

)
+ E

(
Bt+h,jμμ�Bt,s

)
− E(Bt+h,j)μμ�E(B�

t,s)
)

=
∞

∑
s=0

E
(

Bh,s+hΣB�
0,s

)
+

∞

∑
j=0

∞

∑
s=0

Cov
(

Bh,jμ, B0,sμ
)

, h ≥ 0.

Proof of Lemma 3.2.3. Since (3.2.7) defines a doubly stochastic linear process and due to (3.2.8) and
(3.2.9) the assertion follows by Lemma 3.2.2.

Proof of Lemma 3.2.4. Let Ãt = ∏
tq
s=(t−1)q A−s. Hence, ∏

j
s=1 A−s = (∏

j̃
s=1 Ãs)Ã′̃

j, where j̃ = �j/q�
and Ã′̃

j = ∏
j
j̃
As denotes the remaining A−s’s which do not make a full Ãs. Let E log ‖Ã1‖ < 0.

Then there exists a ρ > 1 so that log ρ + E log ‖Ã1‖ < 0. Since Ad is α-mixing, we have that
{log ‖Ãt‖, t ∈ Z} is α-mixing as well. Consequently, {log ‖Ãt‖, t ∈ Z} is ergodic, see Bradley
(2007, Proposition 2.8, 2.6). Hence, as j̃ → ∞, 1/ j̃ ∑

j̃
s=1 log ρ + log ‖Ã−s‖ → log ρ + E log ‖Ã1‖ < 0

a.s.. Thus, as j̃ → ∞, ∏ j̃
s=1 ρ‖Ã−s‖ = exp(∑

j̃
s=1 log ρ + log ‖Ã−s‖) → 0 a.s.. Since

‖
∞

∑
j=0

|
j

∏
s=1

At−s| = ‖
∞

∑
j=0

|(
j̃

∏
s=1

Ãt−s)Ã′̃
j|‖ ≤

∞

∑
j=0

‖Ã′̃
j‖

j̃

∏
s=1

‖Ãt−s‖ =
∞

∑
j=0

‖Ã′̃
j‖ρ− j̃ρ j̃

j̃

∏
s=1

‖Ãt−s‖ < ∞ a.s.,

we have (3.2.8). Since ‖∑∞
j=0 E|∏

j
s=1 A−sΣd(∏

j
s=1 A−s)�|‖ ≤ ‖Σd‖∑∞

j=0 ‖Ã′̃
j‖2E ∏

j̃
s=1 ‖Ã−s‖2,

(3.2.9) follows by E log ‖Ã1‖2 < 0 in the same steps as above.

Proof of Theorem 3.3.1. For a fixedM ∈ Nwe consider the approximation given byXt,M = ∑M
j=0 Bt,jεt−j.

We show the asymptotic normality for 1/
√

n ∑n
t=1 Xt,M. If the approximation is sufficiently close,

the assertion follows by Theorem 4.2 of Billingsley (1968).

Since Bt = fj(Adt, . . . , Adt−j−1), for some measurable functions g, g̃ we have
Xt,M = g(Bt,0, . . . , Bt,M, εt, . . . , εt−M) = g̃(Adt, . . . , Adt−M, εt, . . . , εt−M) . Thus, we have σ(Xt,M) ⊆
σ(σ(Adt, . . . , Adt−M)∪ σ(εt, . . . , εt−m)). This gives us σ(Xk,M, k ≤ t) ⊆ σ(σ(Adk, k ≤ t)∪ σ(εk, k ≤
t)) and σ(Xk,M, k ≥ t) ⊆ σ(σ(Adk, k ≥ t− M)∪ σ(εk, k ≥ t− M)). SinceAd and ε are independent
with Theorem 6.1 of Bradley (2007) we have α((Xt,M), n) ≤ α(Ad, n − M) + α(ε,n − M) and due
to the i.i.d structure of ε we have α((Xt,M), n) ≤ α(Ad, n − M) for n > M. Hence, the strong

3.7 Proofs
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mixing conditions of Ad transfer to (Xt,M), due to Assumption 1 we have ∑∞
n=1 α((Xt,M), n) ≤

MC + ∑∞
n=M α(Ad, n − M)n3 < ∞. The autocovariance of (Xt,M) is given by

Γx,M(h) =
M−|h|
∑
s=0

EBh,s+hΣdB�
0,s +

M

∑
j1=0

M

∑
j2=0

Cov(Bh,jμ, B0,j2 μ).

We use the Cramér-Wold-device to show the asymptotic normality of 1/
√

n ∑n
t=1 Xt,M. Thus, we

consider c ∈ Rd arbitrary and show that

√
N(c�(X̄n,M − EX0,M))

D→ N
(

0, ∑
h∈Z

c�ΓX,M(h)c

)
, as N → ∞.

For this we use Corollary 10.22 of Bradley (2007). We have, as n → ∞,

E(
n

∑
t=1

c�(Xt,M − E(Xt,M)))2 =
n−1

∑
h=−n+1

(n − |h|)c�Γx,M(h)c → ∞,

and
E(1/

√
n

n

∑
t=1

c�(Xt,M − E(Xt,M)))2 → ∑
h∈Z

c�Γx,M(h)c.

Since (c�Xt,M) fulfills the required strong mixing condition, it remains to show that E|c�(X0 −
EX0)|4 < ∞. To see this, we have with Assumption 2 and 3 and since Ad and (εt) are independent

E|c�(X0 − EX0)|4 =
M

∑
j1,...,j4=0

d

∑
i1,...,i4=1

d

∑
s1,...,s4=1

|ci1 ci2 ci3 ci4[
Eε−j1;s1

ε−j2;s2
ε−j3;s3

ε−j4;s4
Cov(B0,j1;i1s1 B0,j2;i2s2 , B0,j3;i3s3 B0,j4;i4s4) +

Cov(ε−j1;s1
ε−j2;s2

, ε−j3;s3
ε−j4;s4

)E(B0,j1;i1s1 B0,j2;i2s2)E(B0,j3;i3s3 B0,j4;i4s4)
]
|

≤
M

∑
j1,...,j4=0

d

∑
i1,...,i4=1

d

∑
s1,...,s4=1

|ci1 ci2 ci3 ci4 |(
(Eε4

0;s1
)(Eε4

0;s2
)(Eε4

0;s3
)(Eε4

0;s4
)(EB4

0,j1;i1s1
)(EB4

0,j2;i2s2
)(EB4

0,j3;i3s3
)(EB4

0,j4;i4s4
)
)1/4

= M4C < ∞.

Thus, we have the asymptotic normality of
√

nX̄n,M. Since ∑h∈Z ∑∞
s=0 |EBh,s+hΣdB�

0,s| < ∞ and

∑h∈Z ∑∞
j1=0 ∑∞

j2=0 |Cov(Bh,jμ, B0,j2 μ)| < ∞, see Assumption 3, we have∑h∈Z ΓX,M(h) → ∑h∈Z ΓX(h),
as M → ∞. Hence, the asymptotic variance of

√
nX̄n,M converges to the asymptotic variance of√

nX̄n. It remains to show that the approximation is sufficiently close. For δ > 0 we have
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lim
M→∞

lim sup
n→∞

P

(
|c� 1√

n

n

∑
t=1

(Xt − EX0 − (Xt−M − EXt,M))| > δ

)

≤ lim
M→∞

lim sup
n→∞

n−1

∑
h=−n+1

n − |h|
n

∞

∑
j1,j2=M+1

c�Cov(B0,j1 ε−j2 , Bh,j2 εh−j2)c/δ2

= lim
M→∞

lim sup
n→∞

n−1

∑
h=−n+1

n − |h|
n

c�
(

∞

∑
s=M+1

EB0,sΣdB�
h,s+|h| +

∞

∑
j1,j2=M+1

Cov(B0,sμ, Bh,jμ)

)
c/δ2

≤ lim
M→∞

∞

∑
s=M+1

∑
h∈Z

c�|EB0,sΣdB�
h,s+h|c/δ2 +

∞

∑
j1,j2=M+1

∑
h∈Z

c�|Cov(B0,sμ, Bh,jμ)|c/δ2 = 0,

due to Assumption 3.

Proof of Theorem 3.3.2. In order to simplify notation, let h ≥ 0. Let Γ̃(h) = 1/n ∑n−h
t=1 (Xt+h −

μ
x
)(Xt − μ

x
)�. Since Assumptions 1 to 3 ensure that Theorem 3.3.1 gives 1/n ∑n

t=1 Xt = X̄n =

μ
x
+OP(n−1/2) and since we have

Γ̂(h) =
1
n

n−h

∑
t=1

(Xt+h − μ
x
+ μ

x
− X̄n)(Xt − μ

x
+ μ

x
− X̄n)

�

=
1
n

n−h

∑
t=1

(Xt+h − μ
x
)(Xt − μ

x
)� + (μ

x
− X̄n)(Xt − X̄n)

� + (Xt+h − μ
x
)(μ

x
− X̄n)

�,

Γ̂(h) = Γ̃(h) +OP(h/n−1/2) follows immediately. Furthermore, we have EΓ̃(h) = Γ(h) + O(h/n).
In the following we show that the variance of Γ̃(h) is of orderO(1/n) and consequently Γ̃(h) as well
as Γ̂(h) are consistent estimators for Γ(h):

Cov(Γ̃(h)j1,j2 , Γ̃(h)j3,j4) = Cov
(

e�j1
1
n

n−h

∑
t=1

(Xt+h − μ
x
)(Xt − μ

x
)�ej2 , e�j3

1
n

n−h

∑
t=1

(Xt+h − μ
x
)(Xt − μ

x
)�ej4

)

=
n−h

∑
t1,t2=1

Cov
(

e�j1
1
n
(Xt1+h − μ

x
)(Xt1

− μ
x
)�ej2 , e�j3

1
n
(Xt2+h − μ

x
)(Xt2

− μ
x
)�ej4

)

=
1
n2

n−h

∑
t1,t2=1

∞

∑
s1,s2,s3,s4=0

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,s3 εt2+h−s3
− EB0,s3 μ)(Bt2,s4 εt2−s4

− EB0,s4 μ)�ej4

)
.

The innovations εt are i.i.d. and therefore we divide the last term on the right hand side into five
terms. For each moment structure of the innovations these are: all indices are equal, 3 indices are
equal, 2 different pairs, 2 indices are equal, and all indices are different. We show that each case
is of order O(1/n). These terms can be bounded by applying the Cauchy-Schwarz-inequality and
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with the case that all indices are equal. We have

1
n2

n−h

∑
t1,t2=1

[
∞

∑
s=0

Cov
(

e�j1 (Bt1+h,sεt1+h−s − EB0,sμ)(Bt1,s−hεt1−s+h − EB0,s−hμ)�ej2 ,

e�j3 (Bt2+h,t2−t1+sεt1+h−s − EB0,t2−t1+sμ)(Bt2,t2−t1+s−hεt1+h−s − EB0,t2−t1+s−hμ)�ej4

)]
=

1
n

n−h−1

∑
l=−n+h+1

n − |l|
n

[
∞

∑
s=0

Cov
(

e�j1 (Bh,sε0 − EB0,sμ)(B0,s−hε0 − EB0,s−hμ)�ej2 ,

e�j3 (Bl+h,l+sε0 − EB0,l+sμ)(Bl,l+s−hε0 − EB0,l+s−hμ)�ej4

) ]

≤ 1
n

n−h−1

∑
l=−n+h+1

n − |l|
n

∞

∑
s=0

(
E
[
e�j1 (Bh,sε0 − EB0,sμ)(B0,s−hε0 − EB0,s−hμ)�ej2

]2
)1/2

(
E
[
e�j3 (Bl+h,l+sε0 − EB0,l+sμ)(Bl,l+s−hε0 − EB0,l+s−hμ)�ej4

]2
)1/2

≤ 1
n

∞

∑
s=0

(
E
[
e�j1 (Bh,sε0 − EB0,sμ)(B0,s−hε0 − EB0,s−hμ)�ej2

]2
)1/2

∞

∑
l=0

(
E
[
e�j3 (Bh,lε0 − EB0,lμ)(B0,l−hε0 − EB0,l−hμ)�ej4

]2
)1/2

= O(1/n).

In the following we consider the case that 3 indices are equal and the fourth index is different from
the others. We have

1
n2

n−h

∑
t1,t2=1

[
∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej2 ,

e�j3 (Bt2+h,t2−t1+s1 εt1+h−s1
− EB0,t2−t1+s1 μ)(Bt2,s2 εt2−s2

− EB0,s2 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej2 ,

e�j3 (Bt2+h,s2 εt2+h−s2
− EB0,s2 μ)(Bt2,t2−t1+s1 εt1+h−s1

− EB0,t2−t1+s1 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j3 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej4 ,

e�j1 (Bt2+h,t2−t1+s1 εt1+h−s1
− EB0,t2−t1+s1 μ)(Bt2,s2 εt2+h−s2

− EB0,s2 μ)�ej2

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j3 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej4 ,

e�j1 (Bt2+h,s2 εt2+h−s2
− EB0,s2 μ)(Bt2,t2−t1+s1 εt1+h−s1

− EB0,t2−t1+s1 μ)�ej2

)]
,

the boundedness follows by moment and mixing conditions given by Assumptions 1 to 3. We begin
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which is equal to

1
n

n−h−1

∑
l=−n+h+1

n − |l|
n

[
∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,l+s1 ε0 − EB0,l+s1 μ)(Bl,s2 ε1 − EB0,s2 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε1 − EB0,s2 μ)(Bl,l+s1 ε0 − EB0,l+s1 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j3 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej4 ,

e�j1 (Bl+h,l+s1 ε0 − EB0,l+s1 μ)(Bl,s2 ε1 − EB0,s2 μ)�ej2

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j3 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej4 ,

e�j1 (Bl+h,s2 ε1 − EB0,s2 μ)(Bl,l+s1 ε0 − EB0,l+s1 μ)�ej2

) ]
= O(1/n).

To see this we take a closer look at the first part. The same arguments can also be applied to the
other parts. Using the Cauchy-Schwarz-inequality and due to E(Bl,sε1 − EB0,sμ) = 0 for all s, l, we
get

1
n

n−h−1

∑
l=−n+h+1

n − |l|
n

[
∞

∑
s1,s2=0

Cov
(

e�j1 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,l+s1 ε0 − EB0,l+s1 μ)(Bl,s2 ε1 − EB0,s2 μ)�ej4

) ]

≤ 1
n

∞

∑
l=0

∞

∑
s1,s2=0

[(
E
[
e�j1 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (B0,lε0 − EB0,lμ)

]4
)1/4 (

E
[
e�j4 (B0,s2 ε1 − EB0,s2 μ)

]4
)1/4

+ E
∣∣∣e�j1 (Bh,s1 ε0 − EB0,s1 μ)(B0,s1−hε0 − EB0,s1−hμ)�ej2

∣∣∣
×
(

E
[
e�j3 (B0,lε0 − EB0,lμ)

]2
)1/2 (

E
[
e�j4 (B0,s2 ε1 − EB0,s2 μ)

]2
)1/2

]
= O(1/n),

since ∑∞
l=0

(
E
[
e�i (B0,lε0 − EB0,lμ)

]4)1/4
< ∞ for all i = 1, . . . , d. In the next step we consider the

case that we have 2 pairs of indices and the 2 pairs are not equal. We have
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1
n2

n−h

∑
t1,t2=1

[
∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej2 ,

e�j3 (Bt2+h,s2 εt2+h−s2
− EB0,s2 μ)(Bt2,s2−hεt2+h−s2

− EB0,s2 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,t2−t1+s1 εt1+h−s1
− EB0,t2−t1+s1 μ)(Bt2,t2−t1+s2 εt1−s2

− EB0,t2−t1+s2 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej4 ,

e�j3 (Bt2+h,t2−t1+h+s2 εt1−s2
− EB0,t2−t1+h+s2 μ)(Bt2,t2−t1−h+s1 εt1+h−s1

− EB0,t2−t1−h+s1 μ)�ej2

) ]

=
1
n

n−h−1

∑
l=−n+h+1

n − |l|
n

[
∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s2−hε2 − EB0,s2 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,l+s1 ε1 − EB0,l+s1 μ)(Bl,l+s2 ε2 − EB0,l+s2 μ)�ej4

)
+

∞

∑
s1,s2=0,s1 �=s2

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,l+h+s2 ε2 − EB0,l+h+s2 μ)(Bl,l−h+s1 ε1 − EB0,l−h+s1 μ)�ej4

) ]
=O(1/n).

To see this, we take a closer look at each part. The first part of the right-hand-side of the last
equation can be bounded in the following way by using Corollary 10.16 in Bradley (2007) and the
Cauchy-Schwarz inequality. Note that Bt,j = f j(Adt, . . . , Adt−j), hence, for some function g, g̃ we
have

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 = g(ε1, Adh, . . . , Adh−s1), (3.7.1)

and

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s2−hε2 − EB0,s2 μ)�ej4 = g̃(ε2, Adl+h, . . . , Adl+h−s2 . (3.7.2)
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Thus, (3.7.2) is at least l − s2 time points ahead (3.7.1) and we get

2
n

n−h−1

∑
l=0

n − l
n

[
∞

∑
s1=0

l

∑
s2=0

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s2−hε2 − EB0,s2 μ)�ej4

)
+

∞

∑
s1=0

∞

∑
s2=l+1

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s2−hε2 − EB0,s2 μ)�ej4

) ]

≤ 2
n

[
n−h−1

∑
l=0

n − l
n

∞

∑
s1=0

l

∑
s2=0

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]4
)1/4

×
(

E
[
e�j3 (Bh,s2 ε2 − EB0,s2 μ)(B0,s2−hε2 − EB0,s2 μ)�ej4

]4
)1/4

α(Ad, l − s2)
1/2

+
n−h−1

∑
l=0

n − l
n

∞

∑
s1=0

∞

∑
s2=l+1

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (Bh,s2 ε2 − EB0,s2 μ)(B0,s2−hε2 − EB0,s2 μ)�ej4

]2
)1/2

]

≤ 2
n

[
∞

∑
s1=0

∞

∑
s2=0

∞

∑
l=0

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]4
)1/4

×
(

E
[
e�j3 (Bh,s2 ε2 − EB0,s2 μ)(B0,s2−hε2 − EB0,s2 μ)�ej4

]4
)1/4

α(Ad, l)1/2

+
∞

∑
s1=0

∞

∑
s2=0

s2

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (Bh,s2 ε2 − EB0,s2 μ)(B0,s2−hε2 − EB0,s2 μ)�ej4

]2
)1/2

]
= O(1/n).

Due to Assumption 1 and 4. The second part can be bounded by applying again the Cauchy-Schwarz-
inequality. Hence, we have
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1
n

n−h−1

∑
l=−n+h+1

n − |l|
n

∞

∑
s1,s2=0

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,l+s1 ε1 − EB0,l+s1 μ)(Bl,l+s2 ε2 − EB0,l+s2 μ)�ej4

)
≤ 1

n

n−h−1

∑
l=−n+h+1

n − |l|
n

∞

∑
s1,s2=0

(
E
[
e�j1 (B0,s1 ε1 − EB0,s1 μ)

]4
)1/4 (

E
[
(B0,s2 ε2 − EB0,s2 μ)�ej2

]4
)1/4

×
(

E
[
e�j3 (B0,l+s1 ε1 − EB0,l+s1 μ)

]4
)1/4 (

E
[
(B0,l+s2 ε2 − EB0,l+s2 μ)�ej4

]4
)1/4

≤ C
n

∞

∑
s1,s2,l=0

(
E
[
e�j1 (B0,s1 ε1 − EB0,s1 μ)

]4
E
[
(B0,s2 ε2 − EB0,s2 μ)�ej2

]4
E
[
e�j3 (B0,lε1 − EB0,lμ)

]4
)1/4

= O(1/n).

Similar arguments can be applied to the third part. In the next step, we consider the case that 2
indices are equal and the other indices are different from each other. We have

1
n2

n−h

∑
t1,t2=1

[
∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej2 ,

e�j3 (Bt2+h,s2 εt2+h−s2
− EB0,s2 μ)(Bt2,s3 εt2−s3

− EB0,s3 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j3 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s1−hεt1−s1+h − EB0,s1−hμ)�ej4 ,

e�j1 (Bt2+h,s2 εt2+h−s2
− EB0,s2 μ)(Bt2,s3 εt2−s3

− EB0,s3 μ)�ej2

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,t2−t1+s1 εt1+h−s1
− EB0,t2−t1+s1 μ)(Bt2,s3 εt2−s3

− EB0,s3 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,s3 εt2+h−s3
− EB0,s3 μ)(Bt2,t2−t1+s2 εt1−s2

− EB0,t2−t1+s2 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,t2−t1+h+s2 εt1−s2
− EB0,t2−t1+h+s2 μ)(Bt2,s3 εt2−s3

− EB0,s3 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,s3 εt2+h−s3
− EB0,s3 μ)(Bt2,t2−t1−h+s1 εt1+h−s1

− EB0,t2−t1−h+s1 μ)�ej4

) ]
,
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which is equal to

1
n

n−h−1

∑
l=−n+h−1

n − |l|
n

[
∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j3 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej4 ,

e�j1 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej2

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,l+s1 ε1 − EB0,l+s1 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,s3 ε3 − EB0,s3 μ)(Bl,l+s2 ε2 − EB0,l+s2 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,l+h+s2 ε2 − EB0,l+h+s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

)
+

∞

∑
s1,s2,s3=0,s1 �=s2 �=s3

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,s3 ε3 − EB0,s3 μ)(Bl,l−h+s1 ε1 − EB0,l−h+s1 μ)�ej4

) ]
= O(1/n).

To see this result notice the first and the second part as well as the third to the sixth part of the last
term can be bounded by using similar arguments. The first part can be bounded by using Corollary
10.16 in Bradley (2007) and the Cauchy-Schwarz inequality. We have
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1
n

n−h−1

∑
l=−n+h−1

n − |l|
n

[
∞

∑
s1,s2,s3=0

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

) ]

≤ 2
n

n−h−1

∑
l=0

n − |l|
n

[
∞

∑
s1=0

l

∑
s2,s3=0

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

)
+

∞

∑
s1=0

∞

∑
s2=0

∞

∑
s3=l+1

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

)
+

∞

∑
s1=0

∞

∑
s2=l+1

l

∑
s3=0

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2 ,

e�j3 (Bl+h,s2 ε2 − EB0,s2 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

) ]

≤ 2
n

[
∞

∑
s1=0

n−h−1

∑
l=0

l

∑
s2,s3=0

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]4
)1/4

×
(

E
[
e�j3 (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

α(Ad, l − max(s2, s3))
1/4

+
n−h−1

∑
l=0

∞

∑
s1=0

∞

∑
s2=0

∞

∑
s3=l+1

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

+
n−h−1

∑
l=0

∞

∑
s1=0

∞

∑
s2=l+1

l

∑
s3=0

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

]
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≤ 2
n

[
∞

∑
s1=0

∞

∑
s2,s3=0

∞

∑
l=0

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]4
)1/4

×
(

E
[
e�j3 (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

α(Ad, l)1/4

+
∞

∑
s1=0

∞

∑
s2=0

∞

∑
s3=0

s3

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

+
∞

∑
s1=0

∞

∑
s2=0

s2

∞

∑
s3=0

(
E
[
e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s1−hε1 − EB0,s1−hμ)�ej2

]2
)1/2

×
(

E
[
e�j3 (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

]
= O(1/n),

since ∑∞
s2=0 s2

(
E
[
e�ji (B0,s2 ε2 − EB0,s2 μ)

]4
)1/4

< ∞ for all i = 1, . . . , d. The third term can be

bounded by using the Cauchy-Schwarz inequality. Hence, we have

1
n

n−h−1

∑
l=−n+h−1

n − |l|
n

∞

∑
s1,s2,s3=0

Cov
(

e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,l+s1 ε1 − EB0,l+s1 μ)(Bl,s3 ε3 − EB0,s3 μ)�ej4

)
≤ 1

n

∞

∑
l=0

∞

∑
s1,s2,s3=0

(
E
[
(e�j1 (Bh,s1 ε1 − EB0,s1 μ)(B0,s2 ε2 − EB0,s2 μ)�ej2

]2
)1/2

(
E
[
e�j3 (B0,lε1 − EB0,lμ)

]4
)1/4 (

E
[
e�j4 (B0,s3 ε3 − EB0,s3 μ)

]4
)1/4

= O(1/n).

It remains to consider the last case in which all indices are different from each other. We apply
Corollary 10.16 in Bradley (2007) and the Cauchy-Schwarz inequality, and similarly to (3.7.1),(3.7.2).
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We obtain

1
n2

n−h

∑
t1,t2=1

[
∞

∑
s1,s2,s3,s4=0,s1 �=s2 �=s3 �=s4

Cov
(

e�j1 (Bt1+h,s1 εt1+h−s1
− EB0,s1 μ)(Bt1,s2 εt1−s2

− EB0,s2 μ)�ej2 ,

e�j3 (Bt2+h,s3 εt2+h−s3
− EB0,s3 μ)(Bt2,s4 εt2−s4

− EB0,s4 μ)�ej4

) ]

≤ 2
n

n−h−1

∑
l=0

n − l
n

[
∞

∑
s1,s2,s3,s4=0

Cov
(

e�j1 (Bh,s1 μ − EB0,s1 μ)(B0,s2 μ − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,s3 μ − EB0,s3 μ)(Bl,s4 μ − EB0,s4 μ)�ej4

) ]

=
2
n

n−h−1

∑
l=0

n − l
n

[
∞

∑
s1,s2=0

l

∑
s3,s4=0

Cov
(

e�j1 (Bh,s1 μ − EB0,s1 μ)(B0,s2 μ − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,s3 μ − EB0,s3 μ)(Bl,s4 μ − EB0,s4 μ)�ej4

)
+

∞

∑
s1,s2=0

∞

∑
s3=0

∞

∑
s4=l+1

Cov
(

e�j1 (Bh,s1 μ − EB0,s1 μ)(B0,s2 μ − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,s3 μ − EB0,s3 μ)(Bl,s4 μ − EB0,s4 μ)�ej4

)
+

∞

∑
s1,s2=0

∞

∑
s3=l+1

l

∑
s4=0

Cov
(

e�j1 (Bh,s1 μ − EB0,s1 μ)(B0,s2 μ − EB0,s2 μ)�ej2 ,

e�j3 (Bl+h,s3 μ − EB0,s3 μ)(Bl,s4 μ − EB0,s4 μ)�ej4

) ]

≤ 2
n

[
∞

∑
s1,s2=0

∞

∑
s3,s4=0

∞

∑
l=0

(
E
[
e�j1 (Bh,s1 μ − EB0,s1 μ)

]5
)1/5 (

E
[
e�j2 (B0,s2 μ − EB0,s2 μ)

]5
)1/5

(
E
[
e�j3 (B0,s3 μ − EB0,s3 μ)

]5
)1/5 (

E
[
e�j4 (B0,s4 μ − EB0,s4 μ)

]5
)1/5

α(Ad, l)1/5

+
∞

∑
s1,s2=0

∞

∑
s3=0

∞

∑
s4=0

s4

(
E
[
e�j1 (Bh,s1 μ − EB0,s1 μ)

]4
)1/4 (

E
[
e�j2 (B0,s2 μ − EB0,s2 μ)

]4
)1/4

(
E
[
e�j3 (B0,s3 μ − EB0,s3 μ)

]4
)1/4 (

E
[
e�j4 (B0,s4 μ − EB0,s4 μ)

]4
)1/4

+
∞

∑
s1,s2=0

∞

∑
s3=0

s3

∞

∑
s4=0

(
E
[
e�j1 (Bh,s1 μ − EB0,s1 μ)

]4
)1/4 (

E
[
e�j2 (B0,s2 μ − EB0,s2 μ)

]4
)1/4

(
E
[
e�j3 (B0,s3 μ − EB0,s3 μ)

]4
)1/4 (

E
[
e�j4 (B0,s4 μ − EB0,s4 μ)

]4
)1/4

]
= O(1/n),

since ∑∞
s1=0

(
E
[
e�ji (Bh,s1 μ − EB0,s1 μ)

]5
)1/5

< ∞ for all i = 1, . . . , d.
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Proof of Theorem 3.3.3. Let P(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j) =: Pj
k. In order to simplify the nota-

tion, in this proof we write Xt := (Xt;s)s∈S and εt := (εt;s)s∈S which is as (without loss of gener-
ality) S = {1, . . . , d}. Furthermore, define the random variable φ

j
k(t) = {ω ∈ Ω : Adt;j·(ω) =

Ãdk;j·, Adt;·j(ω) = Ãdt;·j} which is an indicator that Adt coincides in the j-th row and column
with the considered state Ãdk. For r ∈ Rk

j we have Xr+1;j = ajkXr + εr;j. We have, as n → ∞,

|Rj
k|/n = 1/n ∑n−1

r=0 {φ
j
k(r)}

P→ Pj
k since E|Rj

k|/n = E{φ
j
k(1)} = Pj

k and since Ad is α-mixing, we
have

Var(|Rj
k|/n) =

n−1

∑
h=−n+1

n − |h|
n2 Cov(φj

k(0), φ
j
k(h)) ≤ C

n−1

∑
h=−n+1

n − |h|
n2 α(Ad, |h|) = O(1/n).

Furthermore, we have E(nPj
k)

−1 ∑r∈Rk
j

Xr = (Pj
k)

−1EX1φ
j
k(1) = E

[
X1|φj

k(1)
]
and for i1, i2 = 1, . . . , d

we have with Assumption i) to iv)

e�i1Var

⎛⎝(nPj
k)

−1 ∑
r∈Rk

j

Xr

⎞⎠ ei2 = (Pj
k)

−2
n−1

∑
h=−n+1

n − |h|
n2 Cov(e�i1 X0φ

j
k(0), e�i2 Xhφ

j
k(h))

= (Pj
k)

−2
n−1

∑
h=−n+1

n − |h|
n2

∞

∑
s1,s2=0

Cov(e�i1 B0,s1 ε−s1
φ

j
k(0), e�i2 Bh,s2 εh−s1

φ
j
k(h))

≤ (Pj
k)

−22/n
∞

∑
h=0

[
∞

∑
s=0

E(e�i1 B0,sΣB�
h,h+sei2 φ

j
k(0)φ

j
k(h))

+
∞

∑
s1=0

( |h|
∑

s2=0
Cov(e�i1 B0,s1 μφ

j
k(0), e�i2 Bh,s2 μφ

j
k(h)) +

∞

∑
s2=|h|+1

Cov(e�i1 B0,s1 μφ
j
k(0), e�i2 Bh,s2 μφ

j
k(h))

)]

≤ (Pj
k)

−22/n

[
∞

∑
h=0

∞

∑
s=0

‖Σ‖∞

(
(E(e�i1 B0,s1)

2E(ei2 B0,h1)
2
)1/2

+
∞

∑
h=0

∞

∑
s1,s2=0

(
E(e�i1 B0,s1 μ)4E(e�i2 B0,s2 μ)4

)1/4
α(Ad, h)1/2 +

∞

∑
s1,s2=0

s2

(
(E(e�i1 B0,sμ)

2E(ei2 B0,hμ)2
)1/2

]

= O
(

1
n
(Pj

k)
−2
)

.

Hence, (nPj
k)

−1 ∑r∈R Xr
P→ E
[

X1|φj
k(1)
]
, as n → ∞. Similarly, we have, as n → ∞,

(nPj
k)

−1 ∑
r∈R

Xr+1;j
P→ E
[

X2;j|φj
k(1)
]
= E
[
αjkX1 + μ|φj

k(1)
]
.

Notice that E(φj
k(1)) = Pj

k is independent from n and could be dropped in theO-notation. However,
this probability could be very small and to keep that in mind, we keep this constant. This gives us
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⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr − |Rj
k|−1 ∑

v∈Rj
k

Xv)(Xr − |Rj
k|−1 ∑

v∈Rj
k

Xv)
�
⎞⎠

=

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(
Xr − E

[
X1|φj

k(1)
])(

Xr − E
[

X1|φj
k(1)
])�⎞⎠+O(n−1/2(Pj

k)
−1)

This matrix is very similar to Γ̂(0) and the same arguments can be applied. For the mean of the
matrix we have

E

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(
Xr − E

[
X1|φj

k(1)
])(

Xr − E
[

X1|φj
k(1)
])�⎞⎠

= E

(
(nPj

k)
−1

n−1

∑
r=0

(
Xr − E

[
X1|φj

k(1)
])(

Xr − E
[

X1|φj
k(1)
])�

φ
j
k(r)

)
= Var

(
X1|φj

k(1)
)

,

which is positive definite since Pj
k > 0 andΣ is positive definite. The variance can be bounded by us-

ing the same arguments used to bound the variance of (nPj
k)

−1 ∑r∈Rk
j

Xr and the variance of the sam-

ple autocovariance, see proof of Theorem 3.3.2. We get that the variance is of order O((n(Pj
k)

2)−1).
Consequently, we have⎛⎝(nPj

k)
−1 ∑

r∈Rj
k

(Xr − |Rj
k|−1 ∑

v∈Rj
k

Xv)(Xr − |Rj
k|−1 ∑

v∈Rj
k

Xv)
�
⎞⎠ = Var

(
X1|φj

k(1)
)
+OP(1/

√
n(Pj

k)
−1).

Thus, if n is large enough, we have a matrix that is invertible with high probability and we can
consider the case that this matrix is invertible. Due to Assumption v) we have Xr+1;j = ajkXr +

εr;j, r ∈ Rj
k. Hence,
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⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)
�
⎞⎠ α̃jk

=

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr+1;j −
1

|Rj
k|

∑
v∈Rj

k

Xv+1;j)(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)

⎞⎠
=

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

⎛⎝α�
jkXr + εr+1;j −

1

|Rj
k|

∑
v∈Rj

k

(α�
jkXv + εv+1;j)

⎞⎠ (Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)

⎞⎠
=

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)
�αjk+

(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(εr+1;j −
1

|Rj
k|

∑
v∈Rj

k

εv+1;j)

⎞⎠
⇒ α̃jk = αjk +

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)
�
⎞⎠−1

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(εr+1;j −
1

|Rj
k|

∑
v∈Rj

k

εv+1;j)

⎞⎠ .

In the next step we show that, as n → ∞,⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(εr+1;j −
1

|Rj
k|

∑
v∈Rj

k

εv+1;j)

⎞⎠ P→ 0.

Since the innovation process ε is i.i.d. and independent from Ad, we have 1
|Rj

k |
∑v∈Rj

k
εr+1;j

P→ μ
j
, as

n → ∞. Furthermore, since Xt = ∑∞
l=0 B0,lεt−l , we have
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E

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(εr+1;j −
1

|Rj
k|

∑
v∈Rj

k

εv+1;j)

⎞⎠
=E

(
(nPj

k)
−1

(
∑

r∈Rj
k

∞

∑
l=0

Br,lεr−lεr+1;j −
1

|Rj
k|

∑
r∈Rj

k

∑
v∈Rj

k

∞

∑
l=0

Bv,lεv−lεr+1;j

− 1

|Rj
k|

∑
r∈Rj

k

∑
v∈Rj

k

∞

∑
l=0

Br,lεr−lεv+1;j +
1

|Rj
k|

∑
v1,v2∈Rj

k

∞

∑
l=0

Bv1,lεv1−lεv2+1;j

))

=E

(
(nPj

k)
−1

(
∑

r∈Rj
k

∞

∑
l=0

Br,lμμ
j
− 1

|Rj
k|

∑
r∈Rj

k

∑
v∈Rj

k

∞

∑
l=0

Bv,lμμ
j
− 1

|Rj
k|

∑
r∈Rj

k

∑
v∈Rj

k
v=r+l+1

∞

∑
l=0

Bv,lΣj·

)

=E

(
(nPj

k)
−1

(
− 1

|Rj
k|

∑
r∈Rj

k

∑
v∈Rj

k
v=r+l+1

∞

∑
l=0

Bv,lΣj·

)
= O((nPj

k)
−1).

Furthermore, we have⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(Xr −
1

|Rj
k|

∑
v∈Rj

k

Xv)(εr+1;j −
1

|Rj
k|

∑
v∈Rj

k

εv+1;j)

⎞⎠
=

⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(
Xr − E

[
X1|φj

k(1)
])(

εr+1;j − μ
j

)⎞⎠+ oP(1).

Hence, a bound for the variance of the latter term is sufficient. We have

Var

⎛⎝⎛⎝(nPj
k)

−1 ∑
r∈Rj

k

(
Xr − E

[
X1|φj

k(1)
])(

εr+1;j − μ
j

)⎞⎠⎞⎠
=E

(
(nPj

k)
−2

n−1

∑
r1=0

n−1

∑
r2=0

(εr1+1;j − μ
j
)(εr2+1;j − μ

j
)(Xr1

− E[X1|φj
k(1)])

(
Xr2

− E[X1|φj
k(1)]

)�
φ

j
k(r1)φ

j
k(r2)

)

=ΣjjE

(
(nPj

k)
−2

n−1

∑
r=0

(Xr − E[X1|φj
k(1)])(Xr − E[X1|φj

k(1)])
�φ

j
k(r)

)

=Σjj
1
n
(Pj

k)
−1Var

(
X1|φj

k(1)
)
= O(1/n(Pk

j )
−1).

Thus, α̃jk is asymptotically unbiased and consistent with variance (without error terms of minor

order) Σjj(nPj
k)

−1
(
Var
(

X1|φj
k(1)
))−1

. As already mentioned, since Pj
k can be relatively small, we

write α̃jk = αjk +O((nP(Ad1;j· = Ãdk;j·, Ad1;·j = Ãdk;·j))−1/2). Furthermore, we have
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μ̂
j
=

1

|Rj
k|

∑
r∈Rj

k

Xr+1;j − α̃jkXr =
1

|Rj
k|

∑
r∈Rj

k

(αjk − α̃jk)Xr + εr+1;j = μ
j
+O((nPj

k))
−1/2)

and the assertion follows.

Proof of Theorem 3.3.4. Let s = 1, . . . , d. In order to simplify notation, it is assumed without loss of
generality that Ss = {1, . . . , d}. Thus, we have Xt;s = α̃·sYs

t−1 + εt;s, where Ys
t := Adt;·s � Xt =

∑∞
j=0 g(Adt, . . . , Adt−j)εt−j = ∑∞

j=0 B̃t,jεt−j for some function g. Thus, the process Ys := {Ys
t : t ∈

Z} fits in the framework of a doubly stochastic network linear process. The only difference is that
the first coefficient is not normalized to the identity matrix. Due to the assumptions, Lemma 3.2.2
implies that Ys is stationary and possesses an absolute summable ACF. Firstly, the consistency for
α̂·s given by the linear system (3.3.7) is shown. For the left-hand-side term of the corresponding
linear system we have

1
n

n

∑
t=1

Xt;sY
s
t−1 − (1/n)2

n

∑
t1,t2=1

Ys
t1−1Xt2;s =(

1
n

n−1

∑
t=0

Ys
t (Y

s
t )

� − (
1
n

n−1

∑
t=0

Ys
t )(

1
n

n−1

∑
t=0

Ys
t )

�
)

α�
s· +

(
1
n

n

∑
t=1

εt;sY
s
t−1 − (

1
n

n−1

∑
t=0

Ys
t )(

1
n

n

∑
t=1

εt;s)

)
.

Since ε is i.i.d., we have ( 1
n ∑n

t=1 εt;j)
P→ μ

j
, as n → ∞. Theorem 3.3.1 implies 1

n ∑n−1
t=0 Ys

t = EYs
1 +

OP(n−1/2). SinceYs is one-side and ε is i.i.d., we have E
(

1
n ∑n

t=1 εt;jYs
t−1 − ( 1

n ∑n−1
t=0 Ys

t )(
1
n ∑n

t=1 εt;j)
)
=

0. Before having a look at the variance, first consider that

1
n

n

∑
t=1

(εt;s −
1
n

n

∑
l=1

εl;s)(Y
s
t−1 −

1
n

n−1

∑
l=0

Ys
l ) =

1
n

n

∑
t=1

(εt;s − μ
s
)(Ys

t−1 − EYs
1) + (

1
n

n−1

∑
l=0

Ys
l − EYs

1)(
1
n

n

∑
t=1

εt;s − μ
s
)

=
1
n

n

∑
t=1

(εt;s − μ
s
)(Ys

t−1 − EYs
1) +OP(n−1).

With this we have

Var( 1
n

n

∑
t=1

(εt;s − μ
s
)(Ys

t−1 − EYs
1)) =

1
n2

n

∑
r1=0

n

∑
r2=0

E[(εr1;s − μ
s
)(Ys

r1−1 − EYs
1)(εr2;s − μ

s
)(Ys

r2−1 − EYs
1)

�]

=
1
n2

n

∑
r=0

E[(εr;s − μ
s
)(εr;s − μ

s
)(Ys

r−1 − EYs
1)(Y

s
r−1 − EYs

1)
�] = Σss

1
n

ΓYs(0). (3.7.3)

Theorem 3.3.2 implies
(

1
n ∑n−1

t=0 Ys
t (Y

s
t )

� − ( 1
n ∑n−1

t=0 Ys
t )(

1
n ∑n−1

t=0 Ys
t )

�
)
= ΓYs(0)+OP(n−1/2). Thus,(

1
n ∑n−1

t=0 Ys
t (Y

s
t )

� − ( 1
n ∑n−1

t=0 Ys
t )(

1
n ∑n−1

t=0 Ys
t )

�
)
is invertiblewith high probability for n large enough

and and we have
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α̂�
s· =

(
1
n

n−1

∑
t=0

Ys
t (Y

s
t )

� − 1
n2

n−1

∑
t1,t2=0

Ys
t1
(Ys

t2
)�
)−1(

1
n

n

∑
t=1

Xt;sY
s
t−1 −

1
n2

n

∑
t1,t2=1

Ys
t1−1Xt2;s

)
= αs· +OP(n−1/2).

Furthermore, we have

μ̂
s
− μ

s
=

1
n

n

∑
t=1

Xt;s − α̂s·1/n
n−1

∑
t=0

Ys
t − μ

s
= (αs· − α̂s·)

1
n

n

∑
t=1

Ys
t−1 +

1
n

n

∑
t=1

(εt;s − μ
s
)

= (αs· − α̂s·)EYs
1 +

1
n

n

∑
t=1

(εt;s − μ
s
) +O(n−1)

=
1
n

n

∑
t=1

(εt;s − μ
s
)(1 + (Ys

t−1 − EYs
1)

�ΓYs(0)−1EYs
1) +O(n−1).

This is centered and due to the independence of εt and Ys
t−1 the variance is

Var
(

1
n

n

∑
t=1

(εt;s − μ
s
)(1 + (Ys

t−1 − EYs
1)

�ΓYs(0)−1EYs
1)

)
=

1
n

ΣssE[(1 + (Ys
1 − EYs

1)
�ΓYs(0)−1EYs

1)
2]

=
1
n

Σss(1 + E(Ys
1)

�ΓYs(0)−1E(Ys
1)

�).

Using the M-approximation (Ys
t )

M = ∑M
j=0 B̃t, jεt−j gives an α-mixing process with

∑∞
n=0 α((Ys

t )
M, n)1/5 < ∞. This α-mixing property is obtained for (Ys

t−1)
Mεt. Thus, the same ideas

used in the proof of Theorem 3.3.1 and (3.7.3) lead to, as n → ∞,

1√
n

n

∑
t=1

(εt;s − μ
s
)(Ys

t−1 − EYs
1)

D→ N (0, ΣssΓYs(0)).

Hence, we get √
n(α̂s· − αs·)

D→ N (0, ΣssΓYs(0)−1).

With similar arguments we get that

√
n(μ̂

s
− μ

s
)

D→ N (0, Σss(1 + E(Ys
1)

�ΓYs(0)−1E(Ys
1)

�)).

Furthermore, by using the same arguments as in the variance calculation we obtain, as n → ∞, k ∈
{1, . . . , d}:

Cov(
√

n(α̂s· − αs·),
√

n(μ̂
s
− μ

s
)) → ΣssΓYs(0)−1EYs

1,

Cov(
√

n(α̂s· − αs·), (α̂k· − αk·)) → ΣskΓYs(0)−1ΓYsYk(0)ΓYk(0)−1,

Cov(
√

n(α̂s· − αs·),
√

n(μ̂
k
− μ

k
)) → ΣskΓYs(0)

−1ΓYsYk(0)ΓYk(0)−1EYk
1 ,
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and

Cov(
√

n(μ̂
s
− μ

s
),
√

n(μ̂
k
− μ

k
)) → Σsk(1 + E(Yk

1 )
�ΓYs(0)

−1ΓYsYk(0)ΓYk(0)−1EYk
1 ).

With this, the assertion follows.

Proof of Theorem 3.3.5 . We have

Xt = αXt−1 + βh(Adt−1)Xt−1 + μ + εt = αXt−1 + βYt−1 + μ + εt,

where Yt = h(Adt−1)Xt−1. To shorten the notation let ∑̃t,s = 1
nd ∑n

t=1 ∑d
s=1. The linear system

(3.3.12) can be written as⎛⎜⎜⎝
∑̃t,sXt−1;sXt;s − (∑̃t,sXt;s)

2

∑̃t,sYt−1;sXt;s − ∑̃t,sYt−1;s∑̃t,sXt;s

Xt;s

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∑̃t,sX2

t−1;s − ∑̃t,sXt−1;s ∑̃t,sXt−1;sYt−1;s − ∑̃t,sYt−1;s∑̃t,sXt−1;s 0

Xt−1;sYt−1;s − ∑̃t,sYt−1;s∑̃t,sXt−1;s Y2
t−1;s − (∑̃t,sYt−1;s)

2 0

Xt−1;s Yt−1;s 1

⎞⎟⎟⎠
⎛⎜⎜⎝

α̂

β̂

μ̂

⎞⎟⎟⎠ .

Hence, with one additional step the linear sytem gives the following linear equations:

α̂ = α +

(
˜∑

t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)

2 − ( ˜∑
t,s
(Yt−1;s − ˜∑

t,s
Yt−1;s)

2)−1 ˜∑
t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)(Yt−1;s − ˜∑

t,s
Yt−1;s)

)−1

(
˜∑

t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)(εt;s − ˜∑

t,s
εt;s)− ( ˜∑

t,s
(Yt−1;s − ˜∑

t,s
Yt−1;s)

2)−1 ˜∑t,s(Yt−1;s − ˜∑
t,s

Yt−1;s)(εt;s − ˜∑
t,s

εt;s)

)

β̂ = β +

(
˜∑

t,s
(Yt−1;s − ˜∑

t,s
Yt−1;s)

2 − ( ˜∑
t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)

2)−1 ˜∑
t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)(Yt−1;s − ˜∑

t,s
Yt−1;s)

)−1

(
˜∑

t,s
(Yt−1;s − ˜∑

t,s
Yt−1;s)(εt;s − ˜∑

t,s
εt;s)− ( ˜∑

t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)

2)−1 ˜∑
t,s
(Xt−1;s − ˜∑

t,s
Xt−1;s)(εt;s − ˜∑

t,s
εt;s)

)

μ̂ = μ + ˜∑
t,s

Xt−1;s(α̂ − α) + ˜∑
t,s

Yt−1;s(β̂ − β) + ˜∑
t,s

εt;s.

Furthermore, we have E∑̃t,sXt−1;s = 1/d ∑d
s=1 EX1;s and

Var ˜∑
t,s

Xt−1;s =
1
n

n−1

∑
h=−n+1

n − |h|
n

1
d21ΓX(h)1 = OP(1/n).
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Note that 1ΓX(h)1/d2 depends on the linear dependence between the components. Under some
moderate assumptions on the cross dependence structure this could be of orderO(1/d). Since d is
fixed and nothing is assumed for the cross dependence structure we drop d in the O-notation. We
have

˜∑t,s(Xt−1;s − ˜∑t,sXt−1;s)
2 = ˜∑t,sX2

t−1;s − ( ˜∑t,sXt−1;s)
2

and

Var( ˜∑t,sX2
t,s) =

1
n2d2

d

∑
s1,s2=1

n

∑
t1,t2=1

X2
t1,s1

X2
t2,s2

=
1

nd2

d

∑
s1,s2=1

n−1

∑
h=−n+1

∑
n−|h|

nX2
0,s1

X2
h,s2

= O(1/n),

by applying the same arguments used to bound the variance of Γ̂X(h) in the proof of Theorem 3.3.2
and using the Assumptions 1, 2, and 3. Hence, we get

˜∑t,s(Xt−1;s − ˜∑t,sXt−1;s)
2 = 1/d

d

∑
s=1

EX2
1;s − (1/d

d

∑
s=1

EX1;s)
2 +OP(1/

√
n).

Similarly, with Assumptions 1, 2, and 4 we get

˜∑t,s(Yt−1;s − ˜∑t,sYt−1;s)
2 = 1/d

d

∑
s=1

EY2
1;s − (1/d

d

∑
s=1

EY1;s)
2 +OP(1/

√
n)

and

˜∑t,s(Xt−1;s − ˜∑t,sXt−1;s)(Yt−1;s − ˜∑t,sYt−1;s) =
1
d

d

∑
s=1

EY1,sX1;s − (
1
d

d

∑
s=1

EY1;s)(
1
d

d

∑
s=1

EX1;s)+OP(
1√
n
).

We have ∑̃t,s(Xt−1;s − ∑̃t,sXt−1;s)(εt;s − ∑̃t,sεt;s) = ∑̃t,sXt−1;sεt;s − (∑̃t,sXt;s)(∑̃t,sεt;s). Note that ε is
centered and since Xt−1 and εt are independent, the mean is 0. Since ε is i.i.d. the variance of

∑̃t,sXt−1;sεt;s is

Var( ˜∑t,sXt−1;sεt;s) =
1

n2d2

n

∑
t1,t2=1

d

∑
s1,s2=1

E(Xt1−1;s1
Xt2−1;s2

εt1;s1
εt2:s2

) =
1

nd2

d

∑
s1,s2=1

E(X1,s1
X1,s2

)Σs1,s2 .

Furthermore, due to Assumptions 2, we have Var
(
(∑̃t,sXt;s)(∑̃t,sεt;s)

)
= O(1/n2). Thus,

Var( ˜∑t,s(Xt−1;s − ˜∑t,sXt−1;s)(εt;s − ˜∑t,sεt;s)) =
1

nd2

d

∑
s1,s2=1

E(X1,s1
X1,s2

)Σs1,s2 +O(n−3/2).

Similarly, we get

Var( ˜∑t,s(Yt−1;s − ˜∑t,sYt−1;s)(εt;s − ˜∑t,sεt;s)) =
1

nd2

d

∑
s1,s2=1

E(Y1,s1Y1,s2)Σs1,s2 +O(n−3/2)
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and

Cov( ˜∑t,s(Yt−1;s − ˜∑t,sYt−1;s)(εt;s − ˜∑t,sεt;s),
˜∑t,s(Xt−1;s − ˜∑t,sXt−1;s)(εt;s − ˜∑t,sεt;s)) =

1
nd2

d

∑
s1,s2=1

E(Y1,s1 X1,s2
)Σs1,s2 +O(n−3/2).

Denote ∑̃s := 1/d ∑d
s=1 and ∑̃s1,s2

:= 1/d2 ∑d
s1,s2=1. Thus, we have, as n → ∞, E

√
n(α̂ − α) →

0, E
√

n(β̂ − β) → 0, E
√

n(μ̂ − μ) = 0. Furthermore, denote ¯̄Y2 := (∑̃sEY2
1;s − (∑̃sEY1,s)

2), ¯̄X2 :=

(∑̃sEX2
1;s − (∑̃sEX1,s)

2). We get

Var(
√

n(α̂ − α)) →
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1,s)

2 − ¯̄Y2−1
(EY1;sX1;s − ( ˜∑

s
EX1,s)(

˜∑
s

EY1,s))

)−2

×
(

˜∑
s1,s2

Σs1,s2 [E(X1,s1
X1,s2

) + ¯̄Y2−1
E(Y1,s1 X1,s2

) + ¯̄Y2−2
E(Y1,s1Y1,s2)]

)
,

Var(
√

n(β̂ − β)) →
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1,s)

2 − ¯̄X2−1
( ˜∑

s
EY1;sX1;s − ( ˜∑

s
EX1,s)(

˜∑
s

EY1,s))

)−2

×
(

˜∑
s1,s2

Σs1,s2 [E(Y1,s1Y1,s2) +
¯̄X2−1

E(Y1,s1 X1,s2
) + ¯̄X2−2

E(X1,s1
X1,s2

)]

)
,

Cov(
√

n(α̂ − α),
√

n(β̂ − β)) →
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1,s)

2 − ¯̄X2−1
( ˜∑

s
EY1;sX1;s − ( ˜∑

s
EX1,s)(

˜∑
s

EY1,s))

)−1

×
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1,s)

2 − ¯̄Y2−1
( ˜∑

s
EY1;sX1;s − ( ˜∑

s
EX1,s)(

˜∑
s

EY1,s))

)−1

×
(

˜∑
s1,s2

Σs1,s2 E(Y1,s1 X1,s2
)(1 + ¯̄X2−1 ¯̄Y2−1

)

− ¯̄X2−1
E(X1,s1

X1,s2
)− ¯̄Y2−1

E(Y1,s1Y1,s2)
)

.

Furthermore, we have
√

n(μ̂ − μ) = ∑̃t,sXt−1;s
√

n(α̂ − α) + ∑̃t,sYt−1;s
√

n(β̂ − β) +
√

n∑̃t,sεt−1;s.
Note that Var(∑̃t,sXt−1;s

√
n(α̂ − α)) → 0 since Var(∑̃t,sXt−1;s) = O(1/n) and Var(

√
nα̂ − α) =

O(1). Similar arguments apply to the following parts. Thus, as n → ∞, Var(
√

n(μ̂ − μ)) →
1/d2 ∑d

s1,s2
Σs1,s2 . Furthermore, note that due to {εt, t ∈ Z} being i.i.d. we have

Cov(
√

n ˜∑t,sXt−1,sεt,s,
√

n ˜∑t,sεt,s) = 1/d2
d

∑
s1,s2

EX1,s1
Σs1,s2
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and Cov(
√

n∑̃t,sXt−1,s∑̃t,sεt,s, ∑̃t,sεt,s) = O(n−1/2). Hence,

Cov(
√

n(μ̂ − μ),
√

n(α̂ − α)) →
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1,s)

2 − ¯̄Y2−1
( ˜∑

s
EY1;sX1;s − ( ˜∑

s
EX1,s)(

˜∑
s

EY1,s))

)−1

×
(

˜∑
s1,s2

Σs1,s2 [EX1;s1
+ ( ˜∑

s
EY2

1;s − ( ˜∑
s

EY1;s)
2)−1EY1;s1 ]

)
,

and

Cov(
√

n(μ̂ − μ),
√

n(β̂ − β)) →
(

˜∑
s

EX2
1;s − ( ˜∑

s
EX1,s)

2 − ¯̄X2−1
( ˜∑

s
EY1;sX1;s − ( ˜∑

s
EX1,s)(

˜∑
s

EY1,s))

)−1

×
(

˜∑
s1,s2

Σs1,s2 [EY1;s1 + ( ˜∑
s

EX2
1;s − ( ˜∑

s
EX1;s)

2)−1EX1;s1
]

)
,

With this, the asymptotic normality follows by using the same arguments as in the proof of The-
orem 3.3.1 and 3.3.4.

Proof of Lemma 3.3.6. To simplify notation we consider the case q = 1. The proof can be transferred
with the same notation as used in the proof of Lemma 3.2.4 to q ≥ 1. As given by the proof of Lemma
3.2.4, E log f (Ad1) < 0 and Ad α-mixing implies an almost surely exponential decay with rate ρ ∈
(0, 1) for ∏

j
s=1 ‖ f (Ad−s)‖. Consequently, for finite p1, p2 we have ∑∞

s=0 sp1 E‖∏s
i=1 f (Ad−i)‖p2 <

∞. Furthermore, regarding Theorem 3.3.4 and 3.3.5, for some measurable and bounded function f̃

we have

∞

∑
j=0

E|ei f̃ (Adh)
j

∏
s=1

f (Adl−s)μ|p ≤
∞

∑
j=0

(E‖ f̃ (Ad0)‖2p)1/2(E
j

∏
s=1

‖ f (Ad−s‖2p)1/2‖μ‖

≤ C
∞

∑
j=0

(E
j

∏
s=1

‖ f (Ads)‖2p)1/2 < ∞,

due to the a.s. exponential decay. It remains

∑
h∈Z

∞

∑
s1,s2=0

|Cov
(

s1

∏
i1=1

f (Adh−i1)μ,
s2

∏
i2=1

f (Ad−i2 μ)

)
| < ∞.

For this, consider
s1

∏
i1=1

f (Adh−i1)μ = g(Adh−1, . . . , Adh−s1)

and
s2

∏
i2=1

f (Ad−i2 μ) = g̃(Ad−1, . . . , Ad−s2)
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we have

∞

∑
h=0

∞

∑
s1,s2=0

|Cov
(

s1

∏
i1=1

f (Adh−i1)μ,
s2

∏
i2=1

f (Ad−i2 μ)

)
|

≤
∞

∑
s1,s2=0

s2

∑
h=0

⎛⎝E

(
s1

∏
i=1

f (Ad−i)μ

)4

E

(
s2

∏
i=1

f (Ad−i)μ

)4
⎞⎠1/4

4α(Ad, max(0, h − s − 2 + 1))1/2

+
∞

∑
s1,s2=0

∞

∑
h=s2+1

⎛⎝E

(
s1

∏
i=1

f (Ad−i)μ

)4

E

(
s2

∏
i=1

f (Ad−i)μ

)4
⎞⎠1/4

4α(Ad, max(0, h − s − 2 + 1))1/2

≤ C
∞

∑
h=0

α(Ad, h)1/2 < ∞.

The sum for h < 0 can be bounded with the same arguments. Hence, the assertion follows.

for somemeasurable function g, g̃. Hence, for h ≥ 0 and by applying (Bradley, 2007, Corollary 10.16)

3.7 Proofs
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