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Abstract

This thesis contributes to the development of methods for assessing the stability of

results from statistical data analysis. For applications in science, business, or industry

stability is a general requirement to draw consistent conclusions. This is only the case if

statistical results generated with slightly perturbed data as well as with different data

sets drawn from the same data-generating process lead to the same interpretation.

In psychometric modeling, the stability of item parameters across different subsets of

the data is a particularly important requirement to ensure fair comparisons between

individuals in educational or psychological tests.

The first article in this thesis suggests descriptive measures and graphical illustrations

for a detailed stability assessment of the variable and cutpoint selection in recursive

partitioning. The second article proposes a general framework for assessing and com-

paring the stability of results generated by supervised statistical learning algorithms.

The third article discusses the estimation of standard errors in cognitive diagnosis

models, a particular family of psychometric models. An additional chapter presents

the unpublished results of a comparison of statistical tests to detect parameter insta-

bility in cognitive diagnosis models. All proposed methods are implemented in add-on

packages for the free open source software system R for statistical computing.
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Zusammenfassung

Die vorliegende Arbeit umfasst mehrere Forschungsbeiträge über die Entwicklung neuer

Methoden zur Erhebung der Stabilität statistischer Datenanalysen, die in Forschung

und Praxis durchgeführt werden. Stabilität ist eine wichtige Voraussetzung damit aus

den Ergebnissen statistischer Datenanalysen konsistente Schlussfolgerungen gezogen

werden können. Dies ist jedoch nur möglich, wenn Analysen, die auf leicht veränderten

oder auf komplett unterschiedlichen Datensätzen vom selben datengenerierenden Pro-

zess beruhen, zu vergleichbaren Interpretationen führen. Ausserdem ist Stabilität eine

zentrale Eigenschaft vieler psychometrischer Modelle, um objektive und faire Vergleiche

zwischen Personen zu gewährleisten.

Im ersten Beitrag dieser Arbeit werden deskriptive Statistiken und graphische Illustra-

tionen zur detaillierten Stabilitätsanalyse der Variablen- und Bruchpunktselektion bei

Entscheidungsbäumen vorgestellt. Im zweiten Beitrag wird ein generelles Framework

zur Analyse und zum Vergleich der Stabilität von Ergebnissen, die durch maschinelles

Lernen erzeugt werden, vorgeschlagen. Im dritten Beitrag wird die Schätzung von Stan-

dardfehlern bei Kognitiven Diagnosemodellen, einer neuen Familie psychometrischer

Modelle, diskutiert. Im letzten Kapitel werden unveröffentlichte Resultate zur Erken-

nung von Parameterinstabilitäten präsentiert. Alle vorgeschlagenen Methoden sind als

Zusatzpakete für die freie Open Source Software R verfügbar.
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Scope of this work

Statistical data analysis carried out in industry, business, or scientific research are of-

ten concerned with generating an understanding about “how things really are” (Tukey,

1962). In the social sciences and other areas, for example, scientific findings are ob-

tained by contrasting theoretical considerations (substantial theory) with reality (ob-

served data in a study or an experiment) by using statistical methods. However, the

conclusions and their implications are strongly based on the stability of the results

from the statistical data analysis (Stodden, 2015; Turney, 1995; Yu, 2013). This thesis

contributes to the development of statistical methods to investigate stability.

According to Stodden (2015), stability is a major requirement to ensure the repro-

ducibility of scientific findings. This has previously been pointed out by influential

statisticians. Yu (2013), for example, stated: “More often than not, modern scientific

findings rely on statistical analysis of high-dimensional data, and reproducibility is

imperative for any scientific discovery. Scientific reproducibility therefore is a respon-

sibility of statisticians. At a minimum, reproducibility manifests itself in the stability

of statistical results relative to ‘reasonable’ perturbations to data and to the method

or model used.” (p. 1485) and further gives a broad definition of statistical stabil-

ity: “We say statistical stability holds if statistical conclusions are robust or stable to

appropriate perturbations to data.” (p. 1489).

To be concrete, Yu (2013) mentioned the bootstrap and subsampling as reasonable

forms of data perturbation when the data units are i.i.d. In certain applications, how-

ever, stable statistical conclusions (i.e., invariance properties) are required between

subsets of the data formed by given characteristics of the observational units (an ex-

ample in psychological and educational testing is given below). Moreover, for the

reproducibility of scientific findings in general, stable results are also expected between

completely different data sets drawn from the same data-generating process (DGP).

Depending on the method used to analyze data, different aspects of stability may be

relevant and various approaches may be used to investigate it. In a parametric model,

for example, instability is revealed when the estimated parameters vary across different

subsets of the data formed by known or unknown subgroups of observations. This is

known as parameter instability in economics, as violations of measurement invariance

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
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2 Scope of this work

in psychological and educational measurement or more generally as varying coefficients

in statistics.

The detection of parameter instability provides information about the heterogeneity

in the data and may generate new knowledge that contributes to scientific findings.

In some areas (e.g., in the social and behavioral sciences), however, the concept is

used to detect violations of model assumptions. For example, when measuring latent

traits such as ability, personality, or attitudes in a questionnaire or an assessment

using psychometric models, a particular goal of studying parameter instability is the

detection of differential item functioning (DIF; see, e.g., Holland & Wainer, 1993) –

that is the identification of items that violate the general assumption of constant item

parameters across different groups of test takers in psychometric models.

A common way to detect parameter instability in this setting is by using statistical

inference procedures, such as likelihood ratio, Wald, or Lagrange multiplier tests (see,

e.g., Merkle & Zeileis, 2013). These methods can be used to detect parameter insta-

bility with respect to two subgroups specified by a dichotomous variable (e.g., gender)

that may also be formed by splitting a continuous variable at a known “cutpoint”.

In practice, however, the cutpoint is often unknown and therefore chosen arbitrary

(e.g., age splitted at the median). One particular approach (that will again appear

in Chapter 4) is to estimate the model parameters separately for the two subgroups

and then test the null hypothesis of equal parameter values in both groups using the

(multivariate) Wald statistic.

Thus, with these methods parameter instability can only be tested for the groups that

are proposed explicitly by the researcher (Strobl, Kopf, & Zeileis, 2015). However,

as Merkle and Zeileis (2013) stated: “[...], if the pattern is unknown, it is difficult to

develop a single test that is well-suited for all conceivable patterns.” (p. 61). Therefore,

statistical inference procedures have been proposed that can also detect variation in

the parameter values with respect to a numerical (e.g., time or age), an unordered (e.g.

ethnic groups), or an ordered (e.g., educational degree levels) multicategorical variable

without prior knowledge about the group structure that causes parameter instability

(Merkle, Fan, & Zeileis, 2014; Merkle & Zeileis, 2013). These approaches are based

on stochastic processes of the individual likelihood contributions (scores) and can be

seen as a generalization of the score test that is also known as Lagrange multiplier

(LM) test. Nevertheless, the tests only work with one variable at a time that must be

preselected by the user.

Recursive partitioning (see, e.g. Strobl, Malley, & Tutz, 2009) is a suitable solution

to this constraint. With the development of the model-based recursive partitioning

(MOB, Zeileis, Hothorn, & Hornik, 2008) algorithm that is based on statistical infer-

ence procedures (Hothorn, Hornik, & Zeileis, 2006), it has become possible to explore

parameter instability in parametric models with respect to multiple variables of mixed

types and has lead to a growing number of applications for various models across dif-
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3

ferent disciplines (see, e.g., Bürgin & Ritschard, 2015; Fokkema, Smits, & Zeileis, 2015;

Komboz, Strobl, & Zeileis, 2016; Strobl et al., 2015; Strobl, Wickelmaier, & Zeileis,

2011; Wickelmaier, 2016).

In recursive partitioning, the observations are repeatedly separated into subgroups

– formed by a set of candidate variables – that differ with respect to one or more

parameters in the model (see, e.g., Strobl et al., 2009, for an introduction to recursive

partitioning). Simple and widely used algorithms for recursive partitioning are the well-

known classification and regression trees (Breiman, Friedman, Stone, & Olshen, 1984).

In its original version, the split variable and the cutpoints are selected by the largest

impurity reduction in the response variable. In the MOB algorithm, however, the split

variables are selected by means of a parameter instability test (the score test) and

the optimal cutpoint is determined by the maximum log-likelihood of the model over

all candidate cutpoints. This procedure is computationally efficient and therefore an

attractive approach to detect parameter instability with respect to known or unknown

subgroups formed by several variables and interactions between them. The resulting

partition can be illustrated in the form of a decision tree that is easy and intuitive to

interpret for substantive researchers.

An example of a model-based tree is given in Figure 1. The figure illustrates a “Rasch

tree” which is a method proposed by Strobl et al. (2015) to investigate DIF in the Rasch

model, a popular psychometric model for analyzing dichotomous response data. The

data used for this example originate from an online test on general knowledge conducted

by the German news magazine SPIEGEL in 2009. The respondents answered 45 items

from the knowledge domains politics, history, economy, culture, and natural sciences as

well as sociodemographic questions (gender, age, etc.). For this example, a subsample

containing the responses of 1075 university students from Bavaria to the economy

domain was analyzed. The complete data was analyzed and discussed in Trepte and

Verbeet (2010). Code to reproduce the example using the free open source software R

for statistical computing (R Core Team, 2016) can be found in Appendix C.

The mere fact that the tree illustrated in Figure 1 shows one or more splits indicates

that some of the items were subject to DIF (Strobl et al., 2015). The method detected

four subgroups that differed with respect to the item difficulty parameters in the Rasch

model. Those are displayed in the terminal nodes using profiles plots. In each terminal

node, the level of the difficulty for the particular subgroup is illustrated on the y-axis

(lower values indicate easier items) for each of the nine items (x-direction). The most

striking difference was observed for item 1 that is highlighted for presentation purposes.

Given the same level of ability, item 1 was harder to be answered correctly for female

students than for male students. This conclusion follows from the comparison of the

difficulty of item 1 compared to the other items in nodes 3 and 4 (terminal nodes to the

left) versus the difficulty in nodes 6 and 7 (terminal nodes to the right). Within both

subgroups (males and females), the item was additionally slightly harder to be answered
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correctly for students who visited the website of the SPIEGEL online magazine less

then two times per week (spon ≤ 2–3/week) than for students who visited the website

two or more times per week. This can be concluded by comparing the difficulty of item 1

between the nodes 3 and 4 as well as between the nodes 6 and 7. The task in item 1 was

to recognize Dieter Zetsche, CEO of Daimler AG (a German car manufacturer), from

a picture. The DIF analysis indicated that male students and students who visited

the SPIEGEL website regularly had an advantage for this question. Note that the

Rasch tree investigates DIF jointly for all items and that in this example the difficulty

parameters of other items also varied slightly between the subgroups.

The Rasch tree example illustrates that tree-based methods are very useful for ex-

planatory data analysis or for testing model assumptions. Tree methods, however, are

prone to generate unstable results (Breiman, 1996b). Instability is revealed when the

selected variables and cutpoints vary after small data perturbations or when a different

learning sample from the same DGP is used to generate the tree. Hence, the tree is in

itself a result from a statistical analysis that needs to be investigated for stability.

The first methodological result presented in Chapter 1 of this thesis is concerned with

the stability of tree-based models. The stability of trees was extensively studied in the

literature (see, e.g., Briand, Ducharme, Parache, & Mercat-Rommens, 2009; Ciampi

& Thiffault, 1988; Miglio & Soffritti, 2004; Ntoutsi, Kalousis, & Theodoridis, 2008).

Some work has focused on assessing the stability of the structure of trees, in particular,

the sequence of the splits. In Chapter 1, however, it will be demonstrated by means

of a simple hypothetical example that trees can lead to the same interpretation, even

if the order of the splits is different. Thus, for assessing the stability of a tree with

respect to its interpretation, it is important to investigate the stability of the variable

and cutpoint selection rather than its paths. Chapter 1 therefore presents a toolkit of

simple graphical and computational methods to assess the stability of the variable and

cutpoint selection in tree-based models. For this, the algorithm is trained on several

learning samples generated by resampling from the original data set.

The concept of measuring stability by resampling can be extended to results from su-

pervised statistical learning in general. This idea is pursued in Chapter 2. Adaptive

and flexible methods such as recursive partitioning, neural networks, or support vector

machines have become widely used in business, industry, and many different scientific

areas (see, e.g., Byun & Lee, 2003; Vellido, Lisboa, & Vaughan, 1999; H. Zhang &

Singer, 2010, for surveys of applications). These methods are commonly used for pre-

dictive modeling, where the goal is to achieve accurate predictions. A higher predictive

power can often be achieved at the cost of a lower interpretability (Breiman, 2001).

Methods that generate less interpretable results are often described as “black boxes”.

However, attempts to peek into the black boxes have been made to find out how such

methods exploit the association between the predictors and the response in a data

set. In the field of neural computing, for example, a wide range of studies propose

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



6 Scope of this work

approaches for the extraction of classification rules from trained neural networks (see,

e.g., Andrews, Diederich, & Tickle, 1995, for a survey) or support vector machines

(see, e.g., Barakat & Bradley, 2010, for a review). A general approach to visualize the

results from supervised statistical learning via individual conditional expectation plots

was presented by Goldstein, Kapelner, Bleich, and Pitkin (2015) and is available in the

R package ICEbox.

Moreover, it is widely known that some supervised statistical learning algorithms can

generate unstable results (e.g., recursive partitioning and neural networks, see Breiman,

1996b). The predictions from an unstable result can be stabilized by using ensemble

methods such as bagging (Breiman, 1996a, 1998), boosting (e.g., Schapire, Freund,

Bartlett, & Lee, 1998), or random forests (Breiman, 2001). The big drawback of these

approaches is that any potential interpretability of a single result is largely lost through

the aggregation. Thus, ensemble methods also generate black boxes.

Generally, when the aim is explanation or description rather than prediction (see, e.g.,

Breiman, 2001; Shmueli, 2010, for discussions on various modeling cultures), stability is

again a key requirement to draw reliable conclusions. Moreover, since many algorithms

for supervised statistical learning are not based on a stochastic model for the data, they

also do not provide measures of confidence for their results. Thus, there is a need for

methods to quantify the uncertainty of results from supervised statistical learning.

Therefore, in Chapter 2, a very general framework is proposed that can be used for

measuring the stability of results from supervised statistical learning. Moreover, the

framework will be used to show that even algorithms usually considered as unstable,

such as algorithms for recursive partitioning, can generate stable results if the functional

form of the relationship between the predictors and the conditional distribution of the

response matches to what the algorithm learns.

The first two chapters cover the idea of assessing stability by means of resampling from

the original data. In the context of the main topic of this thesis – stability of statistical

conclusions in general – the contributions following in the remaining chapters should

be regarded as applications of statistical methods to investigate the uncertainty and

the instability of parameters in a particular family of parametric models. To be more

specific, Chapters 3 and 4 are concerned with the estimation of standard errors and the

assessment of differential item functioning (DIF) in cognitive diagnosis models (CDM),

a particular family of psychometric models.

While methods for detecting DIF have a long research tradition in the framework of

item response models (Fischer & Molenaar, 2012), they are relatively new in CDMs,

just like the models themselves. CDMs are used primarily in educational measurement

to measure the strength and weaknesses of students. An item from basic probability

calculus, for example, may require one or more different abilities to be solved correctly:

The calculation of the probability of an event, the probability of the complement of
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an event, the probability of the union of two disjoint events, or the probability of two

independent events (see Section 3.3.2 for a real data example). CDMs can be used to

assess the mastery or nonmastery of such fine-grained abilities, so-called attributes, for

each individual.

Several different versions of CDMs have been proposed over the last two decades that

differ with respect to various characteristics of the tests (e.g., dichotomous or polyto-

mous responses, compensatory, or noncompensatory processes). Rupp, Templin, and

Henson (2010) provided a taxonomy of different CDMs. Many of these can be sub-

sumed within a more general framework, such as the generalized deterministic input,

noisy “and” gate (G-DINA; de la Torre, 2011) model.

Chapter 3 is concerned with the estimation of standard errors in the G-DINA model.

A widespread approach to estimate the model parameters of CDMs is via marginal

maximum likelihood. In this approach, a probability distribution is imposed for the

attribute patterns of the individuals, the so-called latent class distribution. According

to likelihood theory, the standard errors can then be computed via the inverse of

the information matrix. A common mistake in the CDM literature is to compute

the information matrix only for the item parameters of the model, while ignoring the

parameters used to specify the latent class distribution. We show mathematically and

by means of simulations that this approach leads to an underestimation of the standard

errors for the item parameters.

This can have severe consequences for inference techniques that rely on standard errors

(or the entire covariance matrix) including tests for parameter instability. The Wald

test, that was for example proposed for detecting DIF, showed Type I error inflation

in previous studies (Hou, de la Torre, & Nandakumar, 2014; X. Li & Wang, 2015). In

Chapter 4 it is shown by means of simulations that the Type I error inflation vanishes

when the correct computation of the covariance matrix is used. Additionally, the

performance (i.e., the Type I error and the power) of the Wald test is compared to the

LM test that could be used alternatively for detecting parameter instability in CDMs.

In summary, this thesis highlights the importance of stability for reliable interpreta-

tions of results from statistical data analysis and contributes to statistical approaches

for assessing the stability of the variable and cutpoint selection in tree-based mod-

els (Chapter 1), the stability of the predictions of results from supervised statistical

learning in general (Chapter 2), and the uncertainty and the stability of parameters in

cognitive diagnosis models (Chapters 3 and 4). Add-on software packages are provided

to perform the proposed stability analyzes in practice.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



8 Scope of this work

Contributing articles, manuscripts, and software

Parts of this dissertation are based on published articles, submitted manuscripts, work-

ing papers, and add-on software packages for the free open source software R for sta-

tistical computing (R Core Team, 2016).

• Chapter 1 corresponds (up to minor changes) to the published article:

Philipp, M., Zeileis, A., and Strobl, C. (2016). A toolkit for stability assessment of

tree-based learners. In A. Colubi, A. Blanco, and C. Gatu (Eds.), Proceedings of

compstat 2016 – 22nd international conference on computational statistics (pp.

315–325). The International Statistical Institute/International Association for

Statistical Computing.

Michel Philipp developed and designed the descriptive measures and graphics

proposed in the article, constructed the examples that are used throughout the

article, and drafted the manuscript. Carolin Strobl initiated the project. Michel

Philipp and Achim Zeileis developed the R package stablelearner. Achim Zeileis

and Carolin Strobl contributed to the methodology and the manuscript.

• Chapter 2 is based on the manuscript (that is currently under review):

Philipp, M., Rusch, T., Hornik, K., and Strobl, C. (2016). Measuring the stability

of results from statistical learning. (Manuscript under review)

Michel Philipp studied the literature, designed and conducted the simulation and

benchmark experiments, and developed the R code to perform stability analyzes.

Michel Philipp and Carolin Strobl identified the key arguments for measuring

stability by comparing predictions, designed the framework, and drafted the

manuscript. Thomas Rusch and Kurt Hornik contributed to the methodology

and made suggestions to improve the manuscript.

• Chapter 3 is based on the manuscript (that is accepted for publication):

Philipp, M., Strobl, C., de la Torre, J., and Zeileis, A. (in press). On the esti-

mation of standard errors in cognitive diagnosis models. Journal of Educational

and Behavioral Statistics .

Michel Philipp studied the literature, set up the mathematical derivation and

the proof of the underestimation of the standard errors, developed the R package

Rcdm, designed and conducted the simulation study and the real data exam-

ple, and drafted the manuscript. Achim Zeileis recognized a key argument of

the article and contributed to the methodology, the notation, and the initial R-

code. Jimmy de la Torre contributed to the design of the simulation studies and

made suggestions to improve the manuscript. Carolin Strobl contributed to the

manuscript.
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• Chapter 4 is based on additional results.

Michel Philipp studied the literature, designed and conducted the simulation

studies, and drafted the chapter. Achim Zeileis contributed to the methodology

and Carolin Strobl contributed to the manuscript.
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Chapter 1

A toolkit for stability assessment of

tree-based learners

Michel Philipp, University of Zurich

Achim Zeileis, Universität Innsbruck

Carolin Strobl, University of Zurich

Abstract Recursive partitioning techniques are established and frequently applied

for exploring unknown structures in complex and possibly high-dimensional data sets.

The methods can be used to detect interactions and nonlinear structures in a data-

driven way by recursively splitting the predictor space to form homogeneous groups

of observations. However, while the resulting trees are easy to interpret, they are also

known to be potentially unstable. Altering the data slightly can change either the

variables and/or the cutpoints selected for splitting. Moreover, the methods do not

provide measures of confidence for the selected splits and therefore users cannot assess

the uncertainty of a given fitted tree. We present a toolkit of descriptive measures and

graphical illustrations based on resampling that can be used to assess the stability of

the variable and cutpoint selection in recursive partitioning. The summary measures

and graphics available in the toolkit are illustrated using a real world data set and

implemented in the R package stablelearner.

Keywords: stability, recursive partitioning, variable selection, cutpoint selection, deci-

sion trees
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1.1 Introduction

Recursive partitioning approaches, such as classification and regression trees (CART;

Breiman et al., 1984), conditional inference trees (Hothorn et al., 2006), or model-based

recursive partitioning (Zeileis et al., 2008), are widely used for modeling complex and

possibly high-dimensional data sets (Strobl et al., 2009). The methods are able to detect

high-degree interactions and nonlinear structures in a data-driven way. Therefore, these

methods have been frequently applied in many scientific disciplines, as well as in many

industries for predictive modeling purposes (Kuhn & Johnson, 2013).

Nowadays, more complex and more flexible methods exist for predictive learning that

often achieve a better prediction accuracy (e.g., random forests, boosting, support

vector machines, neural networks). Recursive partitioning, however, is still a popular

method in situations where the aim is to infer and interpret the structure of the un-

derlying process that has generated the data. For this purpose, recursive partitioning

is often favored over other methods, since the results can be illustrated in the form

of decision trees, which are relatively easy to interpret. Therefore tree-based methods

are widely used as exploratory modeling techniques in many fields, such as social and

behavioral sciences (see, e.g., Kopf, 2013).

Recursive partitioning algorithms recursively split the predictor space X ∈ Rp to form

homogenous groups of observations. The various algorithms that have been proposed

in the literature mainly differ with respect to the criteria for selecting the split variable,

choosing the cutpoint and stopping the recursion (see Hothorn et al., 2006). CART,

for example, selects the variable and the cutpoint that best unmixes the classes in case

of a classification problem, or that most reduces the squared error loss in case of a

regression problem. Conditional inference trees, on the other hand, perform splitting

and stopping based on a statistical inference procedure.

Despite their popularity, a major drawback of recursive partitioning methods is their in-

stability. By studying the predictive loss of different regularization techniques, Breiman

(Breiman, 1996b) identified recursive partitioning (among others) as unstable. It is well

known that small changes in the training data can affect the selection of the split vari-

able and the choice of the cutpoint at any stage in the recursive procedure, such that

the resulting tree can take a very different form (Kuhn & Johnson, 2013; Strobl et al.,

2009; Turney, 1995). Moreover, recursive partitioning methods do not provide mea-

sures of confidence for the results. Therefore, users cannot assess the degree of certainty

for selected variables and cutpoints. Hence, the question remains to what extend one

can rely on the splits in a single tree to draw conclusions.

Previous research has already focused on assessing the stability of trees from different

perspectives and with different goals (see, e.g., Bar-hen, Gey, & Poggi, 2015; Briand et

al., 2009; Miglio & Soffritti, 2004). Their methods are commonly based on a measure
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that is used to compare the distance (or similarity) between pairs of trees. In (Briand et

al., 2009), for example, a measure of similarity between trees was proposed to stabilize

the selection of the splits in a specific tree algorithm. And more recently, measures

and theory were proposed to detect observations that influence the prediction or the

pruning in CART (Bar-hen et al., 2015). While in these approaches the prediction,

partitioning, and the structure of the trees are considered separately, they may also

be combined in one measure (Miglio & Soffritti, 2004). Thus, while previous research

has focused on reducing instability, measuring the influence of individual observations,

or assessing the distance between trees, we focus on assessing and visualizing two

important aspects that reveal the stability of a tree resulting for a given data set: the

variable and the cutpoint selection.

In this paper, we first discuss instability of results from recursive partitioning using a

practical example. In the second part, we present a computational procedure and a

number of graphical tools that support users for assessing the stability of the variable

and the cutpoint selection. The proposed methods are implemented in the software

package stablelearner (currently available from https://R-Forge.R-project.org/

projects/stablelearner/) for the free R system for statistical computing (R Core

Team, 2016). By using a real world data set, the package will be used throughout the

article for illustrating the proposed methods.

1.2 Instability of trees

To illustrate the instability of trees we have used recursive partitioning to predict the

survival of the passengers during the sinking of the RMS Titanic in 1912 by several

passenger characteristics. A complete passenger list is available online on http://

www.encyclopedia-titanica.org/ (accessed on 2016-04-05). According to the list,

1317 passengers (excluding crew members) were aboard from which 500 survived the

sinking. The passenger information that was used for training the tree was gender, age,

fare, class (1st, 2nd, or 3rd), place of embarkment (B = Belfast, C = Cherbourg, Q =

Queenstown, S = Southampton), number of siblings/spouses aboard (abbreviated as

sibsp), and number of parents/children aboard (abbreviated as parch). The last two

features were obtained from an overlapping data set available on http://biostat.mc

.vanderbilt.edu/wiki/Main/DataSets. The tree was generated using the function

ctree from the partykit package (Hothorn et al., 2006; Hothorn & Zeileis, 2015)

that performs recursive partitioning in a conditional inference framework in R and is

illustrated in the form of a tree in the upper panel of Figure 1.1. In the following, we

will refer to this result as the original tree, since the partitioning was performed on the

original passenger data (as opposed to random samples drawn from the original data

set employed subsequently).
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(a) Tree based on the original data set:
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(b) Tree based on a bootstrap sample drawn from the original data set:
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Figure 1.1: Tree representation of results from recursive partitioning for the RMS Titanic passenger
data.
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Based on a bootstrap sample taken from the original passenger data, we generated a

second tree, which is illustrated in the lower panel of Figure 1.1. The structures of the

trees look quite different at first sight, which suggests a large instability of the tree.

However, when looking closer one can identify variables that were selected in both trees

and split at the same or a similar cutpoint. For example, the numerical variable age

was split at 4 and 54 in the original tree and at the values 4 and 36 in the bootstrap

tree, or the numerical variable fare was split twice in the original tree at 15.02 and

23.05 and at 23.05 in the bootstrap tree. Thus, many splits appeared in both trees,

only the order and the cutpoints for numerical variables were slightly different.

As Turney (1995) elaborated in his work, two trees that are structurally different can

be logically equivalent. This means that two trees can lead to very similar or even

the same interpretation although their structures (in particular the order of the splits)

look very different. To illustrate this principle, we consider two hypothetic trees for a

simple classification problem with two classes and a two-dimensional predictor space.

Note, however, that the statement also holds for any type of response variable and also

for predictor spaces with more dimensions. Figure 2.1 shows two trees (upper row) and

representations of the corresponding partitioning of the feature space (bottom row).

In the illustration the predicted class in each terminal node is indicated by the colors

red and green. According to the figures in panel (a) and (b), the tree structures differ

by the split variable in their root node, their path structure, and the sequence of split

variables in the paths between the root node and the leafs. Yet, though the two trees

are structurally different, the predictions are equivalent for any point in the predictor

space. By mentally merging the two partitioning representations, it becomes evident

that the two trees have identical splits that only appear in a different order in the tree

representation.

To assess whether a tree is stable or not, it is therefore principally important to inves-

tigate the stability of the splits, rather than the stability of the entire tree structure.

From a single tree representation it is not possible to identify which splits are stable.

It is possible, however from an ensemble of trees, e.g., generated by resampling from

the original data. From the ensemble, the stability of the splits can be assessed by

investigating the variable selection frequency and the cutpoint variability.

1.3 Measuring variable selection and cutpoint sta-

bility

In the following we will outline what steps are necessary from a conceptual point of

view to assess the stability of variable and cutpoint selection in trees. Subsequently,

these steps will be illustrated for a binary classification tree modeling survival vs. non-

survival on the RMS Titanic.
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Figure 1.2: Examples of different tree structures, but equivalent partitions and interpretations.

The first step to assess stability is to draw several samples from the original data. The

second step is to compute the descriptive measures and graphics provided in our toolkit

over all samples. The options implemented in the package for generating samples

in the first step are bootstrap sampling (sampling with replacement), subsampling

(sampling without replacement), k-fold sample splitting (partitioning the original data

into k equally sized samples), leave-k-out jackknife sampling, or further user-defined

strategies. Since each option has its specific peculiarities, they will likely generate

different results. For the further illustration we will focus on bootstrap sampling, which

is most widely used and was chosen as the default option in the function stabletree()

that performs the resampling and extracts the required information from the ensemble

for further analysis:

R> library("stablelearner")

R> data("titanic", package = "stablelearner")

R> m <- ctree(survived ~ gender + age + fare + ordered(class) + embarked +

+ sibsp + parch, data = subset(titanic, class %in% c("1st", "2nd", "3rd")))

R> s <- stabletree(m, B = 500)
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The function stabletree() requires a tree-based model object that either inherits

from class party (like, e.g., the result of ctree() or glmtree()) or can be coerced to

it (like, e.g., the results of rpart() or J48()). Additionally, parallelization can easily

be utilized with a convenience option for multicore computation based on parallel (for

platforms that support this).

In the remaining part of this section, descriptive measures and graphical illustrations

are introduced for investigating the stability of the splits, specifically for the variable

and the cutpoint selection. First, the measures will be briefly discussed and then

illustrated for the Titanic example.

1.3.1 Variable selection analysis

The aim of the variable selection analysis is to investigate whether variables that are

selected for splitting in the original tree are also consistently selected for splitting in

the resampled data sets. Furthermore, it can be compared how often (on average) a

variable is selected within the original tree and the repetitions, respectively.

The first descriptive measure is simply the relative frequency of selecting variable xj
for splitting, computed over all repetitions in the procedure. Let b = 1, . . . , B denote

the index for the repetitions and j = 1, . . . , p the index of the variables considered for

partitioning. Further, let S = {sbj} be a binary matrix, where sbj = 1 if variable xj
was selected for splitting in repetition b and 0 otherwise. Then, the relative variable

selection frequency is computed by 100 · 1
B

∑B
b=1 sbj and is expected to be large (i.e.,

close to 100%) for those variables selected in the original tree, if the result is stable. The

variable selection frequency can be illustrated graphically using a barplot() method

that generates the barplot depicted in the left panel of Figure 1.3. The variables

depicted on the x-axis are sorted in decreasing order with respect to their variable

selection frequencies (here and in all the following graphical tools). The bars of variables

selected in the original tree are colored in dark gray and the corresponding labels are

underlined. Thus, from the plot we can infer that the variables gender, class, age,

fare, and sibsp were selected for splitting in the original tree. The height of the bars

corresponds to the variable selection frequency depicted on the y-axis. The first two

bars reach the upper limit of 100%, which means that the variables gender and class

were selected for splitting in each repetition. The variable age, represented by the third

bar, was selected slightly less than 100% (but still very often) over the repetitions. The

variables fare and sibsp, represented by the fourth and the fifth bar, were selected in

the original tree, but not as frequently over all repetitions. This indicates that the splits

in those variables in the original tree must be considered less reliable compared to the

splits of the variable gender, class, and age. The last two bars represent the variables

embarked and parch, which were not selected in the original tree. They were selected

for splitting in less than 50% of the repetitions. This indicates that although those
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Figure 1.3: Graphical variable selection analysis.

variables seem to carry some information that is useful for predicting survival, they are

not predominant. From a content perspective one may assume for this example that,

over the repetitions, the variables embarked and parch occasionally acted as a proxy

for the other variables in the data set.

The summary() method prints the corresponding table with the variable selection fre-

quency (termed freq) in the first column for each variable. The second column (headed

by an asterisk) indicates whether the variable was selected for splitting in the original

tree:

freq * mean *

gender 1.000 1 1.644 2

ordered(class) 1.000 1 2.578 3

age 0.988 1 2.316 2

fare 0.922 1 1.676 2

sibsp 0.810 1 1.132 1

embarked 0.510 0 0.638 0

parch 0.348 0 0.444 0

(* = original tree)

The third column in the table (termed mean) contains the values of another descriptive

measure and denotes the average count splitting in variable xj per tree. Let C = {cbj}
be an integer matrix, where cbj equals the number of times xj was used for splitting

in the tree for repetition b. Note that this number can be greater than one, because

the same variable may be used for splitting in different parts of the tree. The average

variable split count is computed by 1
B

∑B
b=1 cbj and is expected to be close to the count
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of splitting in variable xj in the original tree. The last column in the table (also headed

by an asterisk) indicates how many times the variable was selected for splitting in the

original tree. For example, the variable gender, was used on average 1.644 times over

all repetitions and twice in the original tree. It is possible that the variable gender was

often split on a higher level (and thus less often used for splitting) in the repetitions, as

compared to the original tree. The reverse may be assumed for the variable age, which

was on average more often used for splitting over the repetitions than it was used for

splitting in the original tree. Similar interpretations follow from the information for

the other variables.

Furthermore, we can investigate the combinations of variables selected in the various

trees over the repetitions. This can be illustrated using the function image(). The

resulting plot that is illustrated in the right panel of Figure 1.3 is a graphical illustration

of the binary matrix S that contains the variable selections over the repetitions. A fine

grid of rectangles is drawn for each element in S, which are colored dark gray if sbj = 1

and light gray if sbj = 0. The repetitions (illustrated in the y direction) are ordered such

that similar combinations of selected variables are grouped together. The combination

of variables used for splitting in the original tree is marked on the right side of the

plot using a thin solid red line. The area representing the combination is additionally

enclosed by two dashed red lines. Notice that this is also the most frequent combination

of variables selected over all repetitions. Repetitions that included additional variables

beyond the combination in the original tree are illustrated below the marked area.

Hence, we can deduce from the illustration that the variables embarked and parch were

sometimes additionally used for splitting. In the replications above the marked area

some splitting variables from the original tree were substituted with other variables.

1.3.2 Cutpoint analysis

The variable selection analysis showed that there are some variables which are consis-

tently used for splitting, indicating that those variables are more relevant in predicting

survival than others. However, even when the same variables are selected, the splits

may still vary with respect to the cutpoints chosen for splitting. Therefore a further

important step in assessing the stability of the splits is the analysis of the cutpoints,

which provides more detailed information about the variability of the splits.

We suggest different graphical illustrations for analyzing the variability of the cutpoints

for numerical, unordered categorical and ordered categorical variables. Using the func-

tion plot() these illustrations can be generated for all variables specified in the model.

According to the type of variable the correct illustration is chosen automatically and

the variable names are underlined if the variable was selected for splitting in the orig-

inal tree. Figure 1.4 illustrates these plots for the variables in the Titanic passenger

data set.
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Figure 1.4: Graphical cutpoint analysis.

To analyze the cutpoints for ordered categorical variables, we suggest to use a barplot

that shows the frequency of all possible cutpoints. Those are sorted on the x-axis

by their natural order that arises from the ordering of the categories of the variables.

Examples are given for the variables class, sibsp, and parch in Figure 1.4. Addi-

tionally, the cutpoints chosen in the original tree are marked using a vertical dashed

red line. The number above each line indicates at which level the split occurred in

the original tree. For example, the cutpoint between the first and the second class is

selected more than 500 times (the number of repetitions in this example). This means

that for some repetitions the split appeared several times in different positions in the

same tree (for example in parallel branches). However, the passengers were split even
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more often between the second and the third class. The illustration indicates that

the observations were consistently split by their class affiliation over the repetitions to

predict survival of the passengers. The cutpoint in the variable sibsp, on the other

hand, was less stable. Although the variable was quite frequently selected for splitting,

the variable was often split between lower categories over the repetitions as compared

to the original tree. The variable parch, which was not used in the original tree, was

split only few times between the lower categories and can thus be considered as not

very relevant.

To analyze the partition for unordered categorical variables (avoiding ambiguities by

using the term “partition” rather than “cutpoint” here), we suggest to use image plots,

as illustrated for the variables gender and embarked in Figure 1.4. When using binary

splits, observations with the same categories are partitioned into the left or the right

daughter node. Thus, the categories are assigned to the left or to the right branch

of the split, respectively. For visualizing the partitions over the repetitions, categories

that are directed to the same daughter node are illustrated by the same color. For

the variable gender, there is only one possible split between the two categories Female

and Male. The plot illustrates, however, that this split occurs many times (more than

500) over all repetitions, which underscores the relevance of the split. The combination

of categories that represent a partition as it occurred in the original tree, is marked

on the right side of the plot using a thin solid red line. The area representing the

partition is additionally enclosed by two dashed lines (this is a little hard to see here,

because the binary variable gender only offers one possible partition). Furthermore,

the number(s) on the right side of the marking also represent(s) the level(s) of the

corresponding split(s) in the structure of the original tree. The two numbers on the

right side of the illustration for the variable gender in Figure 1.4 indicate that gender

was split twice on the second level in the original tree.

The plot becomes more detailed for variables with more than two categories such as the

variable embarked. This variable, however, was not used for splitting in the original

tree. Nevertheless it was used relatively often for splitting over all repetitions. In this

illustration the additional color light gray is used when a category was no more repre-

sented by the observations left for partitioning in the particular node. The partitions

over all repetitions are ordered such that equal partitions are grouped together. The

most frequent partitions are [C,Q] versus [S] and [C] versus [B,Q, S]. Since passen-

gers from the different classes tended to embark in different cities (e.g., most third class

passengers embarked in Southampton), the variable embarked may in some repetitions

(but not in the original tree) have been used as a proxy for the variable class in parts

of the tree.

To analyze the cutpoints for numerical variables, we suggest to use a histogram, as

illustrated for the variables age and fare. According to the distribution illustrated for

the variable age, the cutpoints selected over the repetitions spread over the complete
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Figure 1.5: Cutpoint analysis for artificial regression problem.

range of possible cutpoints. Although some cutpoints were selected more frequently

than others, there were no unique cutpoints that were selected over most repetitions.

The selected cutpoints of the variable fare are illustrated on a logarithmic scale in

Figure 1.4, as it makes the picture easier to read. Again, the cutpoints selected over

the repetitions spread over the complete range of possible cutpoints. However, the

cutpoints selected in the original tree match two of three distinct peaks in the histogram

and can be considered slightly more stable as compared to the cutpoints within the

variable age.

From a conceptual point of view, the cutpoint pattern reflects the underlying func-

tional shape. Due to the recursive nature of trees, smooth functions need to be ap-

proximated by several splits while piecewise constant step functions can be described

straightforwardly by individual splits (see also Strobl et al., 2009). This is illustrated

in Figure 1.5. The upper left panel illustrates a linear relationship. To approximate

this functional form, a tree algorithm will split the variable several times at different

cutpoints. Altering the data would thus very likely lead to a different cutpoint. For

a piecewise constant function like the one illustrated in the upper right panel of Fig-

ure 1.5, on the other hand, the functional form is captured by a single split that is

relatively easy to detect and will not change much if the data are altered.

To further demonstrate how the cutpoint stability plots can reflect the underlying

functional form, we have simulated 500 observations from the model y = f(x) + ε for
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each of the two functions displayed in the top row of Figure 1.5. The variable x was

sampled from a uniform distribution ∈ [0, 1] and ε was sampled from a standard normal

distribution. In the bottom row of Figure 1.5 the stability of the cutpoints for the

variable x is illustrated for the two artificial examples. As expected, the identification

of a stable cutpoint failed for the example with the linear relationship (see lower-left

panel). In the example with the piecewise constant relationship, however, the cutpoint

at 0.5 was correctly recovered over most repetitions (see lower-right panel). For the

Titanic example illustrated in Figure 1.4 this means that the cutpoints selected in the

original tree for the variable age are rather unstable and should not be overinterpreted

because the underlying functions seems to be smooth rather than piecewise constant.

The cutpoints selected for the variable fare are slightly more stable.

To sum up, the stability analysis of the binary classification tree fitted for the Titanic

data revealed that many splits in the original tree illustrated in Figure 1.1 were rather

stable, but some parts were quite variable. First, the splits of the variables gender and

class can be considered as important and stable. Second, the splits of the variable

age are ambiguous, although the variable is definitely relevant for predicting survival

of the passengers. Furthermore, the splits of the variable fare are fairly stable, but

the variable was a few times not selected for splitting over the repetitions. Thus, if the

data were altered slightly, the variable might also had been omitted for splitting in the

original tree. And finally, the split of the variable sibsp is least stable and should not

be overinterpreted.

1.4 Discussion

In this paper we have presented a toolkit of descriptive measures and graphical illustra-

tions that can be used to investigate the stability of the variable and cutpoint selection

in models resulting from recursive partitioning. It was demonstrated how the tools

are used and illustrated how intuitive they are by a real world data set. The analysis

revealed that many aspects of the fitted tree were rather stable, but some parts were

quite variable. Notice that the toolkit is not limited to classification trees, but can

also be used to investigate the stability of regression trees or model-based trees. It

was further illustrated that clear cutpoints from piecewise constant functions in the

underlying data generating process, can be identified using the proposed graphics for

the cutpoint analysis.

To acknowledge some limitations associated with the tools it should be mentioned

that they produce less meaningful results for very large trees with many splits. If the

structure of the underlying data generating process is complex, the sample size or the

number of predictors is large, it can become tedious to interpret a tree. Assessing the

variable selection and cutpoint stability of such trees is computationally very intensive
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and the result might be unclear. However, the complexity of a tree can be reduced by

modifying the settings (i.e., the pruning rule or the stopping criteria) of the recursive

partitioning algorithm. Furthermore one should always be aware that any resampling

scheme can only mimic what would happen if a new sample could be drawn from the

population. And finally, the proposed tools do not assess the predictive stability of

trees, which is another important aspect for their interpretation, as we briefly saw in

Section 1.2. This aspect will be addressed in future research.
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Chapter 2

Measuring the stability of results

from supervised statistical learning

Michel Philipp, University of Zurich

Thomas Rusch, WU Vienna University of Economics and Business

Kurt Hornik, WU Vienna University of Economics and Business

Carolin Strobl, University of Zurich

Abstract Stability is a major requirement to draw reliable conclusions when inter-

preting results from supervised statistical learning. In this paper, we present a general

framework for assessing and comparing the stability of results that can be used in real-

world statistical learning applications or in benchmark studies. We use the framework

to show that stability is a property of both the algorithm and the data-generating

process. In particular, we demonstrate that unstable algorithms (such as recursive

partitioning) can produce stable results when the functional form of the relationship

between the predictors and the response matches the algorithm. Typical uses of the

framework in practice would be to compare the stability of results generated by differ-

ent candidate algorithms for a data set at hand or to assess the stability of algorithms

in a benchmark study. Code to perform the stability analysis is provided in the form

of an R package in the supplementary material that is available online.

Keywords: Resampling, Recursive Partitioning, R package stablelearner
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2.1 Introduction

Influential statisticians have previously pointed out the importance of stability to draw

reliable conclusions (or more generally speaking for reproducibility) when interpret-

ing results from statistical learning (see, e.g., Stodden, 2015; Turney, 1995; Yu, 2013).

Yu (2013), for example, stated: “More often than not, modern scientific findings rely

on statistical analysis of high-dimensional data, and reproducibility is imperative for

any scientific discovery. Scientific reproducibility therefore is a responsibility of statis-

ticians.” (p. 1485). To meet this demand in practical applications as well as in

methodological research, we here present a framework that can be used for measuring

the stability of results from statistical learning methods. In simple terms, stability

is revealed when the interpretation of results generated by using different data sets

drawn from some data-generating process (DGP) lead to identical or at least very

similar conclusions.

In the following we will distinguish between the algorithm that is the general rule used

for learning from data (such as a routine for estimating the coefficients in a logistic

regression model or an algorithm for generating classification trees) and the result of

applying the algorithm to a learning sample that is the fitted model or fitted rule

(such as a fitted logistic regression model with estimated parameter values or a fitted

classification tree with selected variables and cutpoints). Other terms used in the

literature (although not consistently) for algorithm include terms like model, learner,

or method, for result terms like fitted model, trained algorithm/learner, or classifier.

Algorithmic methods such as recursive partitioning, support vector machines, neural

networks, and k-nearest neighbors, among many others, have become widely used in

research and industry (Kuhn & Johnson, 2013). An established approach, known as

predictive modeling, is to train an algorithm on a learning sample and then use it

for predicting the response of new observations. In many applications, the focus lies

on generating results with a high predictive performance. In substantive research,

however, some algorithms are becoming more and more popular to achieve not only

precise predictions but also in-depth knowledge about the relationship between the

predictors and the response. Under this approach, that has been characterized as

explanatory modeling (Shmueli, 2010), the goal is to learn about the nature of the DGP

by interpreting the result. For discussions of different modeling cultures in statistics,

we refer to Breiman (2001) and Shmueli (2010). In the present paper, however, we

focus on the stability of results when conducting explanatory data analysis.

A popular method for explanatory modeling is recursive partitioning (see, e.g., Strobl

et al., 2009, for an introduction). In recursive partitioning, the predictor space is

repeatedly split to identify groups of observations with similar values in the response

variable. The simplest cases are the well-known classification and regression trees

(Breiman et al., 1984). More generally, however, the splitting can be conducted with
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respect to the instability of the parameter values in a particular statistical model,

for example, a generalized linear model (e.g., Rusch & Zeileis, 2013). This idea is

implemented in the emerging model-based recursive partitioning method (Hothorn et

al., 2006; Zeileis et al., 2008). The resulting partition of the predictor space and the

estimated model parameters in each region can be used to explain differences between

groups of observations. The partition is usually illustrated in the form of a decision tree

that is easy to interpret. Therefore, tree-based methods are still very popular, although

they have inferior predictive power compared to other algorithms for statistical learning

or ensemble methods that have a lower interpretability.

When a single result is interpreted, the aim is to draw conclusions about the nature of

the DGP. Therefore, stability is a major requirement, since we would expect to draw

the same or at least very similar conclusions from interpreting results generated with a

given algorithm on different random samples from the same DGP. Unfortunately, some

algorithms are prone to generate unstable results (Breiman, 1996b). This means that

small random changes in the data can cause large changes in the interpretation of a

result. For these situations, it is important that we develop a means of quantifying the

reproducibility of the results in terms of stability.

In this paper, we present a general framework to investigate and quantify the stability

of results for both, when a data set (in real world supervised learning problems) or the

DGP (in simulation studies) is available. The framework can support practitioners in

judging the stability of a single analysis result or in choosing the most stable algorithm

among a set of candidates with respect to a consistent interpretation of the results. In

addition to this, it can also be used as a performance criterion in benchmark exper-

iments (see Hothorn, Leisch, Zeileis, & Hornik, 2005). Code to perform the stability

assessment in practice is provided in the form of a software package for the free open

source software R for statistical computing (R Core Team, 2016) that is available in

the supplementary material (version 0.1-2).

The remainder of the article is organized as follows. We first present our theoretical

considerations and our new framework for measuring stability in Section 2.2, and de-

scribe a variety of specifications of the framework in Section 2.3. Section 2.4 contains

simulation experiments to demonstrate some important properties of the framework

and an illustrative example with real data sets how the framework can be used in prac-

tice. Section 2.5 concludes the article with a discussion and ideas for future research.

2.1.1 Related work

The stability of algorithms for statistical learning has been studied in statistics and

machine learning for quite some time (see, e.g., Bousquet & Elisseeff, 2002; Breiman,

1996b; Mukherjee, Niyogi, Poggio, & Rifkin, 2006; Poggio, Rifkin, Mukherjee, & Niyogi,
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2004). These articles identified algorithms that follow a certain definition of being

“stable” and have provided important results for the development of new algorithms.

According to Bousquet and Elisseeff (2002), for example, an algorithm is said to be

“uniformly stable”, if the (largest) change in the output due to small changes in the

data is bounded and the bound decreases as O(n−1). Thus, this line of research mainly

labels algorithms as being stable or not.

In our view, however, stability is not only a property of the algorithm but always

depends on how well “what the algorithm learns matches to the DGP”. Depending

on the functional shape of the underlying relationship between the predictors and the

response, for example, an algorithm may generate more or less stable results. One can

think of a regression tree as the algorithm of interest. When this algorithm is trained

on 100 data sets from a DGP in which the conditional distribution of the response

depends on a smooth function of the predictors, it can only approximate this function

and will thus give a different result every time. If however, the tree is trained on data

sets from a DGP in which the conditional distribution of the response depends on a

simple piecewise constant function of the predictors in a small predictor space, it will

give virtually the same result in every tree. Additionally, the stability of the result

depends on the model that was specified. One can imagine that a correctly specified

model generates more stable results than an incorrectly specified model. In the present

paper, we therefore claim that the stability of a result depends on several components,

including the algorithm, the specified model, and the DGP and focus on empirically

measuring the stability of a result from a practitioner’s perspective.

Ideas for measuring the stability of results have been presented previously in Turney

(1995), Lange, Braun, Roth, and Buhmann (2002), and more recently in Lim and

Yu (2016). There are also approaches for measuring the stability especially for trees

(see, e.g., Briand et al., 2009; Ntoutsi et al., 2008). These interesting concepts are all

introduced either for the classification or the regression case. Unfortunately, neither

of these approaches covers both cases in the same framework. Moreover, they are not

general enough to be expanded to the emerging model-based recursive partitioning

methods. Extending this work, we therefore introduce a very general framework for

assessing the stability of results from statistical learning that is applicable to many

situations. In particular, the procedure involves the pairwise comparison of results

generated from learning samples randomly drawn from the original data set or – in the

case of a simulation study – directly from the DGP. For the comparison of the results,

a similarity (or dissimilarity) measure plus an additional evaluation sample will be

required.
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2.2 Stability measuring framework

Throughout this article, we focus on supervised learning problems by assuming predictor-

response data Z = (Y,X). Let Y denote the (possibly multivariate) response from

some sample space Y and X = (X1, . . . , Xp) the p-dimensional vector of predictors

from some sample space X = X1 × · · · × Xp. For generality, let us assume some data-

generating process (DGP) based on the joint probability PZ = PY,X that characterizes

the population of interest.

We further assume that the conditional distribution of the response PY |X depends on a

function f of the predictors. The goal in explanatory modeling is to reliably estimate

f , such that we can draw conclusions about the relation between X and Y . To make

an example, Y could represent the medical diagnosis, which is either positive (Y = 1)

or negative (Y = 0) and X could be a vector of characteristics about the patient (age,

gender, blood values, body mass index, etc.). When assuming a binomial distribution

for the response, f could represent the unknown function that describes the relationship

between the predictors and the conditional expectation of the diagnosis that is in this

case,

E(Y |X1, . . . , Xp) = P(Y = 1|X1, . . . , Xp) = f(X1, . . . , Xp).

Further, let A be an algorithm for statistical learning. For example, an algorithm for

recursive partitioning – such as CART (Breiman et al., 1984), conditional inference

trees (Hothorn et al., 2006), or C4.5 (Quinlan, 1993) – or an algorithm to train neural

networks, support vector machines, k-nearest neighbors, various types of regression

models, etc.

Additionally, let M be the model that specifies the assumed relationship between the

predictors and the response. The level of details required in M varies between algo-

rithms. At minimum, however, M specifies the response and the predictor variables.

The goal in supervised learning is to approximate f by an algorithm A for the specified

modelM and a given learning sample L′ = {z1, . . . , zn} generated by the DGP (where n

is the number of observations). The result is a function denoted by rA,M(x;L′) = f̂(x)

that is an estimate of the unknown function f(x) and can be used to predict the

response for new instances of x. In a (univariate) regression problem, for example,

the prediction of rA,M(x;L′) is a real value ŷ. In a (univariate) classification problem,

rA,M(x;L′) predicts the class or class probabilities π̂ = {π̂k} for k = 1, . . . K, where K

is the number of classes.

Now, suppose a different learning sample, say L′′, was generated by the DGP. The

result from learning the algorithm A for the model M on the learning sample L′ is
denoted by rA,M(x;L′′). Due to the sampling variability in the learning samples, the
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30 Measuring the stability of results from supervised statistical learning

two results rA,M(x;L′) and rA,M(x;L′′) may be not the same. (Note that in addition

to the sampling variability some algorithms add more randomness to the result, for

example, by using random starting values). That is to say, both estimates of f(x)

could be slightly different and their predictions could vary (at least for some x). Hence,

one can think of rA,M(x;L′) and rA,M(x;L′′) as realizations of a random function

rA,M(x) in the domain of functions that could result from learning on different samples

generated by the DGP. The distribution of rA,M(x) depends on several components;

Most importantly on the algorithm, the specified model, the DGP, and the sample size

n:

rA,M(x) ∼ Pr(A,M,DGP, n, . . .).

In many practical situations, the result rA,M(x;L′) – for example a tree – is interpreted

to learn about the DGP. Then, the question arises whether the interpretation of the

result would have been the same if a different learning sample L′′ had been used to

generate it.

The basic idea discussed in this article is to assess the stability of a result by quantifying

the similarity of realizations from the distribution Pr. Therefore, a measure is required

to assesses the similarity1 between the results generated by training the algorithm

A on two different learning samples, L′ and L′′. Large similarity indicates that two

results lead to the same or similar conclusions about the underlying DGP and, thus,

implies high stability. But before we present the details of the procedure to assess the

stability of a result, we discuss how two results can be compared with respect to their

interpretation.

2.2.1 Semantic versus structural similarity

The literature provides a vast number of semantic and structural measures to quantify

the similarity between results (see, e.g., M. Banerjee, Ding, & Noone, 2012; Briand et

al., 2009; Miglio & Soffritti, 2004; Ntoutsi et al., 2008; Shannon & Banks, 1999; Turney,

1995, for a selection of approaches only in recursive partitioning). Whereas semantic

measures compare the logical meaning of two results by their prediction, structural

measures compare the appearance of two results by their structural elements (e.g., by

the nodes and the branches in a tree). For the purpose of comparing results with respect

to their interpretation and the conclusion that can be drawn about the underlying DGP,

we recommend that a semantic measure should be used.

1Note that the term similarity is related to other terms that have an inverse meaning, such as
distance or divergence. For reasons of consistency, we will distinguish between similarity (proximity,
agreement, correlation, etc.) and dissimilarity (distance, divergence, etc.) throughout the article.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Stability measuring framework 31

(a) Tree representation of result 1
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(d) Partition corresponding to result 2
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Figure 2.1: Examples of different tree structures, but equivalent partitions and interpretations.

This recommendation is based on our theoretical considerations that are in line with

Turney (1995). As Turney elaborated in his work, two results that are structurally

different can be logically equivalent and lead to the same interpretation. To illustrate

this principle, we consider trees applied to a simple classification problem with two

classes and a two-dimensional predictor space. Note, however, that the argument holds

for more general cases and other algorithms as well. Figure 2.1 shows the two exemplary

trees (first row) and the corresponding partitions of the predictor space (second row),

where the predicted class in each terminal node is indicated by two different colors.

As one can see in the first row, the structures of the trees differ with respect to their

shapes and the order in which the variables appear (in reality, they might additionally

differ with respect to the cutpoints used for splitting). Nevertheless, the second row

shows that the predictions are equivalent for any point in the predictor space. Thus, the

two trees have the exact same semantic and lead to the same substantive conclusions.

In addition to those trees shown in Figure 2.1, there exist three more trees with exactly

four leafs, which also have different structures, but correspond perfectly to the parti-

tions shown in Figure 2.1. This example illustrates the fact that the same conclusions

can be drawn from structurally different trees.
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32 Measuring the stability of results from supervised statistical learning

Note that, in addition to the argument above, fair comparisons of the stability of results

between different algorithms are only feasible when a semantic similarity measure is

used as well. Therefore, we recommend the use of a semantic, rather than a structural,

similarity measure for assessing stability.

2.2.2 Measuring similarity based on predictions

As illustrated above, the similarity of two results is best assessed by comparing their

predictions over the entire predictor space. Following Turney (1995), we thus propose

to assess the agreement between two results of the same algorithm by means of a

semantic similarity measure. We consider a similarity measure as a function s(·, ·)
that generates real values. Measures that are particularly useful for computing the

similarity of predictions in the context of regression and classification problems are

discussed in Section 2.3.1.

To compute the similarity between the predictions of the two results, an evaluation

sample is needed to generate predictions from the results. We suggest that more

emphasis is given to areas in the predictor space where new observations are more

likely to occur. This can be accomplished when the evaluation sample is drawn from

PX . In practice, however, stability might be of relevance for a particular region of

the predictor space X (e.g., a group of high risk patients in a medical study). In this

situation, the evaluation sample may also be defined specifically for that region.

Let E be such an evaluation sample that contains m observations, that is |E| = m.

Then the predictions of the results are given by

ŷ′ = {rA,M(x;L′) : x ∈ E} and ŷ′′ = {rA,M(x;L′′) : x ∈ E},

and their similarity can be calculated by s
(
ŷ′, ŷ′′

)
.

As mentioned above, both results are realizations of a random function. The similarity

between the predictions of the two results can therefore again be seen as a realization

of a random variable S. The domain of possible similarity values depends on the

similarity function and via the prediction of the results on the algorithm, the specified

model, the DGP, and the sample size. Thus, the distribution of the similarity is given

by

S ∼ PS(s(·, ·),A,M,DGP, n, . . .).

Finally, the stability of a result for a given algorithm, specified model and DGP can

be assessed by studying characteristics (e.g., the first and second moments) of PS.
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Therefore, we suggest that PS is approximated by generating many realizations s(ŷ′b, ŷ
′′
b )

(b = 1, . . . , B) with the generic procedure described in Section 2.2.3.

2.2.3 Stability measurement procedure

Similar to Hothorn et al. (2005), we distinguish between the following two2 situations:

• The real data problem (as encountered in real-world statistical learning applica-

tions or in benchmark experiments with real data sets) where the DGP is un-

known and all information available is a fixed set of n observations {z1, . . . , zn} ∼
PZn , denoted as the original data set.

• The simulation study problem (as encountered in benchmark experiments with

artificial data sets) where the DGP is known precisely, such that an arbitrary

number of learning samples {z1, . . . , zn} ∼ PZn can be generated by the DGP.

For empirically measuring stability, we suggest the following generic procedure. For

iteration b = 1, . . . , B,

(1) Generate two learning samples L′
b and L′′

b plus an evaluation sample Eb by sam-

pling from F that is a proxy for PZ . To do this in practice, the plug-in principle

can be used. Thus, for the

real data problem: F =̂ F̂n,

simulation study problem: F =̂ PZ ,

where F̂n is an approximation of PZ that represents the DGP well when n is

large.

(2) Generate the results rA,M(x;L′
b) and rA,M(x;L′′

b ) by training the algorithm on

both learning samples.

(3) Compute s(ŷ′b, ŷ
′′
b ) using the evaluation sample Eb.

Drawing samples from F̂n is equivalent to resampling from the original data set (see,

e.g., Wasserman, 2004, chap. 8). Thus, resampling from the original data set can

be used to generate the learning and evaluation samples in the real data problem.

2In practice, one might encounter a third situation where the DGP is unknown but a large number
of independent learning samples are available from an ongoing data-generation pipeline as found in
informatics (network data), finance, meteorology, and so on. In the context of measuring the stability
of a result, this situation is closely related to the simulation study problem.
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Following the notation above, this is comparable to sampling directly from the DGP,

as carried out in the simulation study problem.

To apply the procedure in practice, users have to choose a similarity measure s(·, ·)
and, for real data problems, a resampling and an evaluation method. Sensible choices

are presented in the following section.

2.3 Framework settings

In the first part of the following section we discuss a few exemplary options of similarity

and dissimilarity measures for regression and classification problems. In the second part

of the section, different methods for generating the learning and the evaluation samples

for the case of a real data problem are presented.

2.3.1 Similarity and dissimilarity measures

We distinguish between similarity and dissimilarity measures, denoted by s(·, ·) and

d(·, ·), respectively. Most similarity and dissimilarity measures have a lower and/or an

upper bound (e.g., −∞ < smin ≤ s(·, ·) ≤ smax < ∞, where smin and smax are the

lower and upper bounds of the measure, respectively). Some measures are additionally

normalized, for example between −1 and 1 (most correlation measures) or between 0

and 1 (some distance measures). Normalized measures have the additional advantage

that their range has an absolute meaning.

For reasons of comparability, dissimilarity measures may need to be converted into

similarity measures. Nonnormalized dissimilarity measures may be converted into sim-

ilarity using s(·, ·) = −d(·, ·). To convert a normalized dissimilarity measure into a

normalized similarity, it may be appropriate to use the upper bound as a reference,

that is, s(·, ·) = dmax − d(·, ·), where dmax is the upper bound of the dissimilarity

measure.

A practically relevant task is the comparison of stability assessments from different

results. To compare the stability of two or more results generated using data sets or

DGPs, in which the responses were measured on different scales, we recommend to use

a similarity measure that is invariant to changes in the scale. We denote a similarity

measure as scale-invariant if s(a+ b · ŷ′, a+ b · ŷ′′) = s(ŷ′, ŷ′′) for a, b �= 0.

Please be aware that only point-wise similarity measures should be used for measur-

ing stability in our framework, which guarantees that comparisons are made between

predictions for the same point in the predictor space (as illustrated previously in Sec-

tion 2.2.1).
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Regression

Let us first consider the regression case. Thus, in the univariate case, ŷ′ and ŷ′′ are
numeric vectors of length m (ŷ′, ŷ′′ ∈ R). The literature provides a vast number of sim-

ilarity and dissimilarity measures used in diverse fields (e.g., in medicine, psychology,

image registration, clustering, etc.) to compare numeric measurements.

The well-known Euclidean distance (ED) is a dissimilarity measure that can be used

to compute the similarity of numeric predictions. It is computed as

dED(ŷ
′, ŷ′′) =

√√√√ m∑
i=1

(ŷ′i − ŷ′′i )2,

and has a lower bound of dmin = 0 that is approached if and only if ŷ′ = ŷ′′. A normal-

ized version of the ED is available through the Gaussian radial basis function (GRBF)

kernel that is commonly used in support vector machines to assess the proximity be-

tween two data points. It is defined as

sGRBF(ŷ
′, ŷ′′; σ) = exp

(
−dED(ŷ

′, ŷ′′)2

2σ2

)
,

and can be interpreted as a similarity measure. σ is a free parameter that can be used

to regulate the “sensitivity” of the measure, where smaller values lead to less similar

predictions (i.e., sGRBF(ŷ
′, ŷ′′; σ1) < sGRBF(ŷ

′, ŷ′′; σ2) when σ1 < σ2). Please note that,

although this measure is normalized, it is not scale-invariant.

A scale-invariant option is the concordance correlation coefficient (CCC, Lin, Hedayat,

Sinha, & Yang, 2002) that is a normalized version of the well-known mean squared

deviation (MSD). It is defined as

sCCC(ŷ
′, ŷ′′) =

2σŷ′ŷ′′

σ2
ŷ′ + σ2

ŷ′′ + (μŷ′ − μŷ′′)2
,

and can be computed by plugging in the standard sample estimates for means, vari-

ances, and covariances. When using the divisor m (instead of m − 1) in the sample

estimates, the values of the CCC are bounded within [−1, 1], where the lower bound in-

dicates perfect disagreement and the upper bound indicates perfect agreement between

the predictions, respectively.

Other measures presented in the literature may also be used in our framework. A small

selection of measures that we consider as useful for the regression case (without any

claim to completeness) is provided in the supplementary material in Appendix A.1.
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Classification

Let us now consider the classification case. A simple way to assess the similarity

between two classification results is the average class agreement (ACA) between the

predicted class labels, computed by

sACA(ŷ
′, ŷ′′) =

1

m

m∑
i=1

ŷ′i=ŷ′′i ,

where is the indicator function. By definition, it is normalized between 0 and 1. In

case of unbalanced response classes, the Kappa statistic may be used to additionally

account for their distribution (see, e.g., Kuhn & Johnson, 2013, chap. 11).

For a probabilistic classification result, however, much more detailed information is

provided by the predicted class probabilities. Therefore, we suggest using a more

precise similarity estimation via

s(π̂′, π̂′′) = 1− 1

m

m∑
i=1

δ(π̂′
i, π̂

′′
i ),

where δ(·) is a distance measure between two discrete probability distributions (see,

e.g., Cha, 2007, for a survey on distance measures between probability distributions).

A small selection that we consider as useful and computationally feasible distance

measures for discrete probability distribution (without any claim to completeness) is

provided in the supplementary material in Appendix A.1. A well-known version is the

total variation distance (TVD) that is computed via

δTVD(π̂
′
i, π̂

′′
i ) =

1

2

K∑
k=1

|π̂′
ik − π̂′′

ik|.

Due to the l1-norm, it is more sensitive to small changes in the predicted class proba-

bilities compared to other distance measures.

2.3.2 Resampling and evaluation methods

Let us consider the real data problem where the DGP is unknown. To assess the

stability in this situation, two samples L′
b and L′′

b for generating the results and a

third sample Eb for evaluating the similarity have to be generated in each iteration

by resampling from the original data set L = {z1, . . . , zn} (as previously described in

Section 2.2.2).
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Learning overlap

An important aspect concerns the intersection between the learning samples, given by

L′
b ∩ L′′

b , that we call the learning overlap as opposed to the evaluation overlap (see

below).

In principle, the similarity of the predictions from two results depends on the similarity

of the observations in the learning samples that are used to generate it (see, e.g., Ntoutsi

et al., 2008). It is to be expected, however, that the similarity of the predictions is

additionally affected when observations are sampled into both learning samples, that

is, when L′ ∩ L′′ �= ∅. One can think of the jackknife approach as the most extreme

form of learning overlap, since except for a single observations, both samples share

the same observations. In this case, the focus would rest on the robustness of a result

with respect to small changes in the given learning sample. With less learning overlap,

the focus shifts towards the generalizability of a result for independent draws from the

DGP.

The learning overlap varies between the following exemplary resampling methods:

• Bootstrap sampling: We refer to bootstrap sampling as randomly drawing r ob-

servations with replacement from L, which is done twice per iteration to generate

two learning samples. The probability that observation zi appears in both sam-

ples can be shown to be
[
1− (1− 1

n
)r
]2
. If r = n, the expected size of the overlap

between L′
b and L′′

b is ≈ 40% of the size of L and decreases if r < n. Thus, the

overlap can be reduced by choosing r < n.

• Subsampling: We refer to subsampling as randomly drawing r observations with-

out replacement from L, which is done twice per iteration to generate two learning

samples. The probability that observation zi appears in both samples is given

by
[
r
n

]2
and is obviously 1 if r = n. For all r, subsampling generates a larger

learning overlap than bootstrap sampling, while the size of the learning samples

is always smaller.

• Splithalf: We refer to splithalf sampling as splitting the learning sample into two

disjoint sets of observations. To generate L′
b, sample 
n

2
� observations without

replacement from L. Then, let L′′
b = L \ L′

b. The overlap is zero by definition.

However, at the same time, the size of the learning samples is halved compared

to the bootstrap approach.

Hence, the resampling methods differ with respect to the sample size and the overlap

of the learning samples.
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Evaluation overlap

Another aspect concerns the sample Eb used for evaluating the predictions and its

overlap with the learning samples, given by Eb ∩{L′
b ∪ L′′

b}, that we call the evaluation
overlap. It corresponds to the set of observations in Eb previously used for generating

either result. This is an important issue when the aim is prediction error estimation:

In order to avoid overfitting, the learning and test sample should not overlap and there

is always a tradeoff between keeping enough observations in the learning sample for

precisely estimating the model versus reserving enough observations as a test sample

for precisely estimating the prediction accuracy (see, e.g., Molinaro, Simon, & Pfeiffer,

2005). Since in our framework for stability assessment, however, we do not compare

the predictions with the true response but only two predictions with each other, the

evaluation overlap (related to the detectability of overfitting) is less of an issue, as will

be illustrated in Section 2.4.3.

The evaluation overlap varies between the following exemplary evaluation methods:

• In-sample (ALL): The complete set of observations available is used for evaluating

the similarity (i.e., Eb = L). How many of the observations in this sample were

previously used for generating the results depends on the resampling method.

• Out-of-bag (OOB): The observations not used for learning either of the two results

are used for evaluating the similarity (i.e., Eb = L \ {L′
b ∩ L′′

b}). Hence, none of

the observations in the evaluation sample was also present in any of the learning

samples.

• Out-of-sample (OOS): A completely separate set of observations is used for eval-

uating the distance (i.e., Eb ∩ L = ∅), which could result from separating the

original data set into a learning and a test sample. None of the observations used

in the evaluation sample was used for generating any of the results in the entire

stability assessment procedure. Note that with this method, fewer observations

are available for generating the results in the first place.

Hence, the evaluation methods differ with respect to the sample size and the overlap

of the evaluation sample with the learning samples.

The impact of the different combinations of resampling and evaluation methods will be

illustrated by the simulation experiments presented in Section 2.4.3. The most strict

way to investigate the practically relevant question of how dissimilar the interpretation

of a result could be when a different learning sample was used for training, is when

there is no learning and evaluation overlap and when the size of the learning and the

evaluation samples remain equal to the size of the original data set. Later on, we

therefore consider the stability assessed by means of independent draws from a known
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DGP (as carried out in the simulation study problem) as the “reference stability”; that

is, as the gold standard. In situations where the DGP is unknown, we aim to come as

close as possible to the reference.

Reweighting

A computationally efficient way for implementing the resampling in practice is by

reweighting the observations in the original data set L. Instead of generating the

learning samples L′
b and L′′

b by resampling from the original data set, the n-dimensional

vectors w′
b = {w′

ib} and w′′
b = {w′′

ib} (i = 1, . . . , n) that contain nonnegative case-weights

are defined. The case-weights of observation i are given by

w′
ib = #{i : xi ∈ L′} and w′′

ib = #{i : xi ∈ L′′}.

By means of these case-weights, all common resampling schemes can be represented.

For example, the case-weights w′
ib, w

′′
ib ∈ {0, 1} apply for subsampling and splithalf

sampling and the case-weights w′
ib, w

′′
ib ∈ {0, 1, 2, 3, . . .} apply for bootstrap sampling.

The results rA,M(x;L, w′
b) and rA,M(x;L, w′′

b ) are then generated using w′
b and w′′

b ,

respectively, and the predictions are given by

ŷ′ = {rA,M(x;L, w′
b) : x ∈ L} and ŷ′′ = {rA,M(x;L, w′′

b ) : x ∈ L}.

However, whether case-weights can be applied in practice depends on the algorithm

and its software implementation.

To implement a specific evaluation method or restrict the analysis to a particular

region of the predictor space, one can define we
b = {we

ib} (i = 1, . . . , n) that is also a n-

dimensional vector with nonnegative case-weights. The predictions used for estimating

the similarity s(ŷ′b, ŷ
′′
b ) are now selected from ŷ′ and ŷ′′ according to the counts in we

b .

2.4 Simulation and benchmark experiments

In the next section, we will first describe the architecture of the DGPs that were used for

the simulation experiments. Then, we will present the results of two small simulation

studies. In the first study, we analyzed the effect of different characteristics of the DGP

on the stability of a result. In particular, we illustrate our claim that the stability of

a result is a property of both the algorithm and the DGP, not the algorithm alone. In

the second study, we analyzed the effect of different combinations of resampling and

evaluation methods on the stability of a result to investigate our expectation that a
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larger learning overlap leads to higher similarity values. The section ends with a small

benchmark experiment to illustrate how the framework can be applied in practice.

We restricted our analyzes to binary classification problems and two methods that are

widely used in statistical learning, recursive partitioning and logistic regression. Besides

the fact that both methods can be used for classification and produce interpretable

results, they are also very different. Whereas it is widely known that tree-algorithms

generate unstable results, logistic regression is known as a stable method. Moreover,

unlike logistic regression, the original tree-algorithms are not based on a stochastic

model for the data and, thus, do not provide statistical inference procedures. In our

analyzes, we used the following implementations available in R: The function ctree()

from the partykit package for conditional inference trees and the function glm() with

family = "binomial" for logistic regression. For both algorithms, the default settings

were used.

2.4.1 Data-generating processes

Our aim was to investigate the impact of several characteristics of the DGP on the

stability assessment in the framework. In a preliminary study (results not shown for

brevity) we observed notable impact for the sample size, the distribution of the response

classes, and the dimension of the predictor space for different algorithms. Additionally,

we were interested in the effect of different forms of the underlying function describing

the association between the predictors and the conditional distribution of the response.

Therefore, the DGPs were set up as follows:

Dimensionality For all DGPs, the predictor variables were sampled from a mul-

tivariate standard normal distribution, xi ∼ Np(0, Ip), where p was the number of

predictor variables comprising q ≤ p signal and p− q noise variables. The dimensional-

ity was chosen at p = 20 and p = 40, from which the first q = 4 and q = 8 were signal

variables, respectively.

Functional form The binary response was sampled from a Bernoulli distribution

with a conditional probability of success given by

πi = P(Yi = 1|xi) = logit−1

(
β0 +

q∑
j=1

f(xij)

)
.

The intercept β0 specifies the baseline probability and was used to control the class

distribution (see below). Two different functions were selected for f(x): The identity

function, f(x) = x, and the signum function, f(x) = sgn(x). The choice of f(x) was

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Simulation and benchmark experiments 41

motivated by the algorithms considered for the simulations. Whereas logistic regression

can model linear effects exactly as simulated by the DGPs with the identity function,

trees model nonlinear effects using piecewise constant functions exactly as simulated

by the DGPs with the signum function. Thus, we had DGPs with a functional form

that matched perfectly to either algorithm.

Sample size Different sample sizes were selected to illustrate asymptotic behavior.

For presentation purposes, the samples sizes were selected according to the binary

logarithm:

n = 27(= 128), 28(= 256), . . . , 215(= 32 768).

Class distribution Three different class distributions were investigated for the re-

sponse: Equally balanced classes (50%/50%), weakly unbalanced classes (30%/70%)

and strongly unbalanced classes (10%/90%). To approximately achieve these alloca-

tions, the intercept β0 was chosen at 0, 1.417, and 3.447 for the lower dimensionality

(p = 20) and at 0, 1.774, and 4.315 for the larger dimensionality (p = 40).

2.4.2 Study 1: Impact of the DGP

Reference stability

In the first study, we investigated the reference stability of results generated by training

ctree and glm on DGPs that differed by the sample size, the dimension of the predictor

space, the class distribution, and the functional form. We first illustrate and discuss

the results when the correct algorithm was selected for the functional form of the DGP.

We here present and discuss only the results for ctree; the results for glm can be found

in the supplementary material in Appendix A.2. The findings in case the algorithm did

not match to the functional form of the DGP are illustrated and discussed separately

in Section 2.4.2 for both algorithms.

The results for ctree are illustrated in Figure 2.2. The panels separate the three

different class distributions, the two dimensions of the predictor space are displayed

in different colors, and the sample sizes are depicted on the x axis. To estimate the

similarity distribution as precisely as possible, the procedure was repeated B = 5000

times (in practice, however, fewer iterations are sufficient). Thus, for each condition,

5000 similarity values were computed. The dashed lines correspond to the median

similarity. The shaded areas mark the range between the lower and upper quartile of

the similarity distribution in each DGP. The similarity was computed using the total

variation distance as described in Section 2.3.1.
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Figure 2.2: Stability assessment of results generated by training the algorithm ctree on DGPs based
on the signum function, but with different sample sizes, distribution of the response classes and
dimension of the predictor space. The dashed line corresponds to the 50%-quantile of the estimated
similarities. The highlighted area marks the simlarities between the 25%- and the 75%-quantile.

First of all, the results became more stable as the sample size increased, as was to be

expected. For the DGPs with lower dimension (p = 20, depicted in orange color) the

similarity values converged towards the upper bound of the similarity measure. For

the largest sample size considered, the ctree results were almost perfectly stable. For

the DGPs with larger dimension (p = 40, depicted in blue color) the convergence was

slower and never reached the maximum similarity within the examined sample sizes.

The stability was smaller for DGPs with balanced classes than for DGPs with un-

balanced classes. This can be explained by the declining range of values from which

the conditional probabilities were sampled in the unbalanced case, where the baseline

probability was higher. Thus, any differences between the predictions of the results

became smaller and the stability correctly increased.

In all scenarios, the variation among the similarity values declined as the sample size

increased. Additionally, for p = 40, the similarity values were higher for small samples,

then decreased for medium-sized samples before they again increased for large samples

(see “U-shape” for p = 40). Both artifacts are caused by the circumstance that trees

with fewer splits (resulting for small samples) were generally more stable than trees

with more splits (resulting for medium-sized samples), before the trees again became

more stable due to the increased sample size. Trees with fewer splits had, on the other

hand, a weaker prediction accuracy. This highlights that – perhaps counterintuitively

– a high stability does not always go hand in hand with a high prediction accuracy, so

that a measure of stability can give additional information, as we will also show in the

application example in Section 2.4.4.
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Figure 2.3: Stability assessment of DGPs with different functional forms (signum and identity) and
two algorithms (ctree and glm) for different sample sizes. The dashed line corresponds to the 50%-
quantile of the estimated similarities. The highlighted area marks the simlarities between the 25%-
and the 75%-quantile.

Match between DGP and algorithm

Further, we investigated how the match between the functional form of the DGP and

the algorithm affects the stability of a result. For a better presentation, the study was

restricted to DGPs with equally balanced classes and lower dimensionality (p = 20).

The results for the remaining conditions can be found in the supplementary material

in Appendix A.2.

The results are illustrated in Figure 2.3 using again the medians as well as the lower

and the upper quartiles of the similarity distributions. The left panel shows the stabil-

ity of results generated from ctree and the right panel for results generated from glm,

respectively. The two different functional forms of the DGPs are depicted in orange

(identity function) and blue (signum function). Thus, in the left panel, the ctree algo-

rithm perfectly matched to the DGPs with the signum function illustrated in orange.

In the right panel, however, the glm algorithm perfectly matched to the DGPs with

the identity function illustrated in blue.

At first sight, we find that for both algorithms the DGP with the corresponding func-

tional form leads to more stable results. Since the DGPs with different functional

forms are not directly comparable, however, minor differences (as in the right panel

for glm) should not be overinterpreted. Still, we do see clearly that the stability of

ctree is much higher for the DGPs with the piecewise constant signum function (see

left panel). This supports our expectation that the stability is a property of both the

algorithm and the functional form of the DGP.
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Table 2.1: Resampling and evaluation methods used in the simulation study. The columns three and
four show the expected size of the learning sample and the expected learning overlap; the columns
five and six show the expected size of the evaluation sample and the expected evaluation overlap.
The values are given relative to the original sample size n or to the size of the learning samples r;
the expected learning overlap in column four is for completeness additionally given relative to n (in
parentheses).

Resampling Evaluation Learning L′,L′′ Evaluation E

|L′|
n = |L′′|

n
|L′∩L′′|

r
|E|
n

|E∩{L′∪L′′}|
r

Bootstrap sampling Out-of-bag 100% ≈ 40% (40%) ≈ 13.5% 0%

Bootstrap sampling In-sample 100% ≈ 40% (40%) 100% ≈ 86.5%

Bootstrap sampling Out-of-sample 75% ≈ 40% (30%) 25% 0%

Subsampling Out-of-bag 80% ≈ 80% (64%) ≈ 4% 0%

Subsampling In-sample 80% ≈ 80% (64%) 100% ≈ 96.0%

Subsampling Out-of-sample 60% ≈ 80% (48%) 25% 0%

Splithalf sampling In-sample 50% 0% (0%) 100% 100%

Splithalf sampling Out-of-sample 37.5% 0% (0%) 25% 0%

2.4.3 Study 2: Impact of resampling and evaluation methods

Method comparison

In the second study, we investigated the impact of eight different combinations of

resampling and evaluation methods listed in Table 2.1 using the following procedure

for each algorithm and DGP:

1. First, we assessed the reference stability for the selected algorithm and the DGP

and computed the mean of the corresponding similarity distribution, denoted by

s̄0.

2. For l = 1, . . . , 100 we repeated the following steps:

(a) Draw a learning sample L from the DGP and generate the result ra(x;L).

(b) Assess the stability of ra(x;L) as described in Section 2.2.3 with B = 500

using the resampling combinations listed in Table 2.1.

(c) For each combination, compute the mean of the corresponding similarity

distribution, denoted by s̄l.

(d) Compute the mean difference between s̄l − s̄0.

Thus, for each combination, we estimated 100 mean differences to the reference stability

that are illustrated by means of boxplots in Figure 2.4. In this illustration, values below

zero imply that the mean of the reference stability was underestimated. Results are
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Figure 2.4: Boxplots of 100 differences between the mean of the reference similarity distribution and
the mean of similarity distributions generated with different combinations of resampling (boot =
bootstrap sampling, half = splithalf sampling, subs = subsampling) and evaluation methods (all =
in-sample, oob = out-of-bag, oos = out-of-sample). The upper and the lower row represent the results
for ctree (for DGPs with indicator function) and glm (for DGPs with signum function), respectively.

shown for DGPs with equally balanced response classes, lower dimensionality, and

the functional form to which either algorithm perfectly matched. The results for the

remaining conditions can be found in the supplementary material in Appendix A.2.

In the upper row, the mean differences are illustrated for ctree and in the lower

row for glm, respectively. The columns separate the three different samples sizes

and the resampling combinations are illustrated in the x direction of the graph. For

computational reasons, this study was only conducted for samples sizes n = 128, 512,

and 2048. Recall that the learning and the evaluation overlaps as well as the effective

sample sizes for learning and evaluation differ between the methods (see Table 2.1).

For glm (see lower row), the results were in line with our expectations. First, the

stability increased with a higher learning overlap: half < boot < subs. Second, the

stability decreased with increasing size of the evaluation sample: oob > oos within

the same resampling method. Finally, the stability (mostly) remained constant for

increasing evaluation overlap: oob ≈ all within the same resampling method. Overall,

the mean reference stability s̄0 was captured well by bootstrap sampling (boot) with

in-sample (all) or out-of-bag (oob) evaluation. With splithalf sampling (half ) and sub-

sampling (subs), on the other hand, the reference stability was under- or overestimated

within the investigated sample sizes.
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For ctree (see upper row), the results were not so clear and none of the combinations

approached the mean reference stablity s̄0 reasonably well over all sample sizes. This

might be due to a confounding between the properties of the resampling combination

and the trees’ tuning parameters.

Therefore, the experiment did not reveal one generally optimal resampling combination,

but did highlight that framework-specific factors influence the stability assessment and

should be kept constant across studies for comparable results.

Note that the resampling combinations we investigated have the advantage that they

are widely known and practically applicable to real data problems. However, they

do not allow us to single out individual effects, for example, of the learning and the

evaluation overlap, because these are confounded with each other, as illustrated in

Table 2.1. Therefore, we will further investigate individual effects in an artificial setting

that does not correspond to any practically applicable resampling or evaluation method,

in the next section.

Learning and evaluation overlap

To demonstrate that the stability is largely affected by the learning overlap, but much

less by the evaluation overlap, we conducted a controlled computer experiment in

which each overlap was systematically and individually manipulated to assess its partial

impact. We only performed this analysis for DGPs with the lower dimensionality

(p = 20) and equally balanced classes.

In each of l = 1, . . . , 100 repetitions we first drew an original data set L of size n = 1536

(= 3×512) from the DGPs with the functional forms matching to the algorithms ctree

and glm. Next, the stability was assessed for two results: One generated by means of

an overspecified model (using all predictor variables) and another generated by means

of a correctly specified model (using only signal predictors). Then, in each of the

b = 1, . . . , 500 iterations of the stability assessment, we assembled the observations

from the original data set L into the three samples L′
b, L

′′
b and E of size r = 512, such

that either the learning overlap or the evaluation overlap ranged from 0%, 10%, 20%,

etc. to 100% (relative to the size of the learning and evaluation samples). Thus, in this

study, the reference stability corresponded to the situation with 0% overlap. Finally,

the median similarity was computed in each repetition.

Thus, we ended up with a distribution of 100 median values from which again the

median as well as the lower and the upper quartile are illustrated in Figure 2.5. The

different overlaps are depicted on the x-axis. The colors orange and blue distinguish

the correctly specified from the overspecified model.

We consider first the left panel that illustrates the results for the varying learning over-

lap, while the evaluation overlap was kept constant at zero. For both algorithms and
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Figure 2.5: Stability assessment of results generated by experimentally manipulating the learning and
the evaluation overlap. The dashed line corresponds to the 50%-quantile of s̄l for ctree (cirlces) and
glm (triangles) and the colors distinguish the specified models. The highlighted area marks values
between the 25%- and the 75%-quantile.

models and with increasing overlap, the stability converged as expected towards the

upper bound of the similarity measure (which was 1.00 in the case of the total varia-

tion distance used here). Although the largest increase in stability was between 90%

and 100%, we also observed substantial differences between 0% (corresponding to the

overlap for splithalf sampling) and 80% (corresponding to the overlap for subsampling).

Thus, in practice the learning overlap should be kept as low as possible in order to

avoid large distortions from the reference stability. However, splithalf sampling, al-

though without overlap, is not recommended because the size of the learning sample is

significantly reduced, which also affects the stability assessment for small to medium-

sized data sets. Therefore, taking all our results into account, we recommend bootstrap

sampling as a good compromise.

Moreover, the results show that the stability was generally higher for glm (filled trian-

gles) than for ctree (filled points) as previously demonstrated in Section 2.4.2. A new

insight, that was in line with our expectation, was that the stability was higher with

the correctly specified model (illustrated in orange) than for the overspecified model

with additional noise variables (illustrated in blue). This is true for both algorithms,

but note that the ctree algorithm showed overall lower stability but was less affected

by noise variables due to its automatic variable selection.

Now consider the right panel that illustrates the results for the varying evaluation

overlap, while the learning overlap was kept constant at zero. With increasing overlap,

the stability remained (almost) constant for both algorithms and models. A very small

and negligible increase can be detected with ctree for both models and with glm for

the overspecified model. According to preliminary results (not shown for brevity), this
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48 Measuring the stability of results from supervised statistical learning

Table 2.2: Median and IQR of stability and accuracy values for ctree on well-known classification
problems. Results are listed in decreasing order of the median stability. Legend: n = sample size, p =
number of predictors, K = number of classes.

Data set n p K Stability Accuracy CPU time [sec]

Median IQR Median IQR

Iris 150 4 3 0.956 0.048 0.919 0.146 4.7

Breast Cancer 699 9 2 0.933 0.029 0.864 0.080 13.4

Titanic 1317 7 2 0.925 0.027 0.561 0.086 13.6

Ionosphere 351 34 2 0.900 0.058 0.788 0.132 10.8

Pima 768 8 2 0.835 0.036 0.403 0.130 13.8

Satellite 6435 36 6 0.819 0.013 0.363 0.025 631.3

Sonar 208 60 2 0.728 0.098 0.412 0.231 12.6

Vehicle 846 18 4 0.723 0.050 0.552 0.084 50.3

Glass 214 9 6 0.694 0.107 0.219 0.185 12.9

increase in slightly more pronounced for smaller samples sizes. Thus, compared to the

issue of overfitting when assessing prediction accuracy (see comment in Section 2.3.2),

the evaluation overlap has only little impact on the stability assessment.

2.4.4 Benchmark experiment

To illustrate the stability assessment in a practical scenario, we trained ctree on eight

well-known benchmarking problems for classification from the UC Irvine meachine

learning repository (Lichman, 2013) and the Titanic data from the R package stable-

learner. The stability was assessed via the total variation distance as described in

Section 2.3.1 with bootstrap sampling and out-of-bag evaluation using B = 500 iter-

ations. For comparison, the prediction accuracy was assessed simultaneously via the

Kappa statistic that takes the original distribution of the response class into account

(see, e.g., Kuhn & Johnson, 2013, chap. 11). The values zero/one indicate no/perfect

agreement between the true and the predicted class. A computer with a four core Intel

i7-2600 processor running with 3.7 GHz in total and 8 GB RAM on a 64-bit Linux

(Ubuntu 14.04.5 LTS) operating system was used to perform the analyzes. The results

are given in Table 2.2. For each data set, the table lists the median and the interquar-

tile range (IQR) of the stability and the accuracy values, as well as the CPU time in

seconds and additional information about the data sets.

Generally, the results were more stable on data sets with fewer predictors and response

classes. The result on the Ionosphere data set is a notable exception from this obser-

vation. Moreover, for most problems, the stability increased along with the accuracy.

However, as mentioned earlier, there might be exceptions, as shown here exemplary by
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the results for the Titanic and the Pima data set. In practice, we conclude, one would

be relatively safe to interpret a tree generated by ctree for the Iris data set, whereas

for the Glass data set it is not recommended to overinterpret the result.

Finally, the stability assessment was relatively fast for small data sets but took clearly

longer for large data sets (more than ten minutes for the Satellite data set). Note that

the computation time would also vary largely between algorithms.

2.5 Discussion

2.5.1 Summary and recommendations

Stability is an important property for drawing reliable conclusions from a statistical

learning result because the interpretation of an unstable result can lead to wrong

conclusions and errors in decision making. Moreover, many algorithms do not provide

measures of stability for their results. Thus, for practitioners, it is crucial to be able

to judge the stability of their results before interpreting them.

In this article, we have presented a framework to assess the stability. It can be used

in real-world statistical learning applications to assess the stability of a result for a

given algorithm and data set. Moreover, the framework can be applied in benchmark

experiments to either compare the stability of results generated by training different

algorithms on a certain data set or to compare the stability of results generated by

training different data sets on a certain algorithm. Instead of real data sets, one can

also assess the stability of results for artificial DGPs.

The stability is assessed by repeatedly computing the similarity between two results

generated with learning samples drawn directly from the DGP or by resampling from

the original data set. Therefore, a measure of similarity is required. To compute

the similarity of the substantial meaning between the results, we strongly recommend

to use a measure that compares two results by their predictions and not by their

structure. We have presented a few exemplary measures for classification and regression

problems. We would like to emphasize that our selection is not complete and that the

framework can be combined with other measures as well. Note also that by choosing

an appropriate similarity measure, the framework could be extended to unsupervised

learning applications.

Unlike previous research, our aim was not a theoretical investigation of the stability of

learning algorithms alone. Instead, our motivation was to measure the stability of the

result of an algorithm trained on a specific learning sample. Thereby, we have shown

by our reasoning and in a simulation experiment that the stability of a result is not

only a property of the algorithm alone but also of the DGP that has generated the

learning sample.
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In an exemplary illustration, we have further studied the impact of different data

characteristics (sample size, dimensionality, and class distribution) on the stability

of results generated by logistic regression and conditional inference trees for binary

classification. We observed a large impact on the stability for all investigated factors.

Although we do not claim that our results can be generalized to other algorithms or

DGPs beyond the simulation study, they provide useful insights into the mechanisms

of the stability assessment itself.

As a side note, we would like to address the wide-spread opinion that the correlation

among the predictor variables decreases the stability. This may be correct when a

structural similarity measure is used. For a semantic similarity measure, however, this

need not be the case. According to our preliminary studies (results not shown for

brevity), the stability can even slightly increase with correlated variables. A possible

explanation for this is that a narrower distribution of the data in the predictor space

lead to less variable solutions. This, however, needs to be further investigated in future

research.

A practically relevant task is the comparison of stability assessments from different

results. Such comparisons should only be conducted when either the response variables

were measured on the same scale – which is generally the case for classification but

not necessarily for regression problems – or when a scale-invariant similarity measure

is used.

When assessing the stability of a result for a real data set, a resampling and an evalu-

ation method must additionally be selected. We have investigated different resampling

and evaluation methods for logistic regression and conditional inference trees. Our

investigations revealed that none of the methods performed best in all simulation sce-

narios. Hence, there is nothing like the one true approach for all situations. However,

the similarity distribution was clearly affected by the learning overlap. For reasons

of comparability, we therefore suggest that users report the similarity measure, the

resampling and evaluation method, and the number or iterations they employed when

presenting stability results.

It is further important to always assess stability jointly with prediction accuracy since

results with weak predictive performance can be very stable and vice versa. Stumps

(tree without splits), for example, are very stable, although they have a weak prediction

accuracy. As illustrated by our benchmark experiment, however, both aspects can often

go hand in hand.

2.5.2 Limitations and future research

A specific aspect of the stability assessment procedure is the pairwise comparison of

results generated from different learning samples. This approach was also proposed
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by other authors (Lange et al., 2002; Turney, 1995). With this procedure, we aim

at the essential question of how much two results were alike if two different learning

samples would have been used to generate them and the idea that the learning sample

was generated from a DGP that could (theoretically) produce many learning samples.

However, there are alternative ways to estimate the similarity distribution Ps. One

could, for example, estimate Ps by repeatedly computing the similarity between results

generated on resampled data sets and the result generated on the original data set (see,

e.g., Bar-hen et al., 2015). Another option could be to estimate Ps from the similarities

between all possible pairs of results generated on resampled data sets (see, e.g., Lim

& Yu, 2016). Future research should compare the different approaches to reveal what

properties they have in common.

Another important open question is, how stability is connected to variability. Suppose

that several results have been generated on different learning samples. It can be shown

that, for a given point in the predictor space, the sum of the squared distances between

the predictions of all results is proportional to the covariance of the predictions at this

point (Y. Zhang, Wu, & Cheng, 2012). Thus, the expected variability over the predictor

space is proportional to the expected similarity computed by the Euclidean distance.

It is, however, not clear whether such a connection can be found for other similarity

measures as well. A better knowledge about these connections could possibly help to

reduce the computational costs in assessing the (expected) stability.

This points out that in our framework, stability is a global characteristic over the

complete predictor space. A result is, however, almost certainly more stable in certain

areas of the predictor space than in others. It would be interesting for future research to

examine different ways to graphically illustrate the local stability (e.g., using contour

plots) and to develop methods for statistical inference (e.g., confidence intervals for

predictions, see Wager, Hastie, & Efron, 2014) to investigate the local stability of

results.

We have presented a list of similarity measures for classification and regression problems

and highlighted some of their properties. However, there is a need for a comprehensive

survey of similarity and dissimilarity measures that may also be used in our frame-

work. Future research should as well examine their properties with respect to stability

assessment, such as scale-invariance. Another important aspect is to know which sim-

ilarity and dissimilarity measures fulfill the conditions of a metric and to study the

consequences for the stability assessment, if not.

Moreover, it will be interesting for future research to extend the framework to other

statistical learning problems. An example of an emerging and promising type of su-

pervised learning applications is model-based recursive partitioning (see, e.g., Strobl et

al., 2015; Zeileis et al., 2008) in which a parametric model can be fitted to the observa-

tions in each terminal node. The popular survival trees (see Bou-Hamd, Larocque, &

Ben-Ameur, 2011, for an overview) are examples of model-based recursive partitioning
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approaches for censored data. The resulting tree can also be used for prediction. How-

ever, the type of prediction will depend on the model used in the terminal nodes. In

the case of a survival tree, it could be the estimated survival curve for each individual.

To compute the similarity between two survival trees, one could then, for example, cal-

culate the mean of the log-rank statistic that is often used to compare two estimated

survival functions, over all predicted individuals.

2.6 Implementation

An implementation of the stability measuring framework presented in this paper is

available in the form of an add-on package for the free open source software R for

statistical computing (R Core Team, 2016). The workhorse function stability()

implements the stability assessment procedure with bootstrap sampling and out-of-

bag evaluation as the default resampling and evaluation method and with B = 500.

Several similarity and dissimilarity measures for regression and classification are imple-

mented. Stability can be assessed for one or more results generated by a few predefined

algorithms (see ?LearnerList), but new algorithms can be integrated by the user. Par-

allelization can be utilized with a convenience option for multicore computation based

on parallel (for supported platforms). More detailed stability analyzes based on de-

scriptive measures and graphical illustrations can be conducted for results generated by

tree-based algorithms via the function stabletree() as described in Philipp, Zeileis,

and Strobl (2016).
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Chapter 3

On the estimation of standard

errors in cognitive diagnosis models

Michel Philipp, University of Zurich

Carolin Strobl, University of Zurich

Jimmy de la Torre, The University of Hong Kong

Achim Zeileis, Universität Innsbruck

Abstract Cognitive diagnosis models (CDMs) are an increasingly popular method

to assess mastery or nonmastery of a set of fine-grained abilities in educational or

psychological assessments. Several inference techniques are available to quantify the

uncertainty of model parameter estimates, to compare different versions of CDMs, or

to check model assumptions. However, they require a precise estimation of the stan-

dard errors (or the entire covariance matrix) of the model parameter estimates. In this

article, it is shown analytically that the currently widely used form of calculation leads

to underestimated standard errors because it only includes the item parameters, but

omits the parameters for the ability distribution. In a simulation study, we demon-

strate that including those parameters in the computation of the covariance matrix

consistently improves the quality of the standard errors. The practical importance of

this finding is discussed and illustrated using a real data example.

Keywords: cognitive diagnosis model, G-DINA, standard errors, information matrix
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3.1 Introduction

Cognitive diagnosis models (CDMs) are restricted latent class models that can be used

to analyze response data from educational or psychological tests. In the educational

context, they are becoming a popular method for measuring mastery or nonmastery of a

set of fine-grained abilities (called attributes) that can be used, for example, to support

teachers to recognize strengths and weaknesses of students. Lee, Park, and Taylan

(2011) and H. Li (2011) are examples of cognitive diagnostic analyses of mathematics

and language skills in large-scale assessments. However, the method has also been

suggested to identify the presence or absence of psychological disorders (de la Torre,

van der Ark, & Rossi, 2015; Templin & Henson, 2006), or can be used for a detailed

measurement of fluid intelligence using abstract reasoning tasks (Rupp et al., 2010;

Yang & Embretson, 2007).

The field of cognitive diagnostic assessments has also become a popular area for

methodological research over the past 20 years. Many different versions of CDMs have

been proposed to analyze responses from tests with various characteristics (e.g., models

for dichotomous and polytomous responses, compensatory and noncompensatory pro-

cesses). See Rupp et al. (2010) for a taxonomy of CDMs. Many of these models can be

subsumed within a more general framework, such as the generalized deterministic in-

put, noisy “and” gate (G-DINA; de la Torre, 2011) model, the log-linear CDM (LCDM;

Henson, Templin, & Willse, 2009), or the general diagnostic model (GDM; von Davier,

2008). Aside from Bayesian approaches, which are presented in the literature for dif-

ferent versions of CDMs (see e.g., Culpepper, 2015), the model parameters are usually

estimated via marginal maximum likelihood estimation (MMLE) using, for example,

the EM algorithm (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 2007).

In the marginal formulation of the model, a probability distribution that models the

attribute space is imposed in conjunction with the traditional item response function,

that models the conditional probability of a correct response given the attributes.

An important step of any practical analysis is to assess the uncertainty of the estimated

model parameters using confidence intervals or significance tests. Furthermore, several

techniques are available to investigate the model fit or to check the model assumptions

of a CDM, including tests for (item-level) model comparisons (de la Torre & Lee, 2013)

and to detect differential item functioning (Hou et al., 2014). These methods require

a precise estimation of the model parameters and their standard errors (or the entire

covariance matrix).

However, according to the CDM literature (see e.g., J. Chen & de la Torre, 2013; de la

Torre, 2009, 2011; George, 2013; Rojas, 2013; Song, Wang, Dai, & Ding, 2012) and

open source software implementations (e.g., in the R package cdm, version 4.991-1), it

is common to compute the standard errors only for the parameters which are used to

specify the item response function while ignoring the parameters used to specify the

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Introduction 55

joint distribution of the attributes. Consequently, this approach is frequently applied

in substantive as well as in many methodological research applications.

Unfortunately, this widely used approach can lead to underestimated standard errors,

as we will demonstrate in this paper. The aim of this article is to provide detailed

guidance on how standard errors for cognitive diagnosis models should be computed

correctly. In addition to analytic arguments, we will investigate the quality of the

standard errors using simulations.

The severity of the underestimation varies considerably depending on some known

factors (e.g., test length and number of attributes in the assessment), as well as un-

known factors (e.g., parameters of the item response function and distribution of the

attributes). In some situations, the incremental improvement with the correct approach

may become negligibly small (e.g., for high test lengths). However, because the factors

potentially causing underestimation are manifold, practioners cannot know upfront

whether the data being analyzed is subject to underestimation of standard errors, and

how severe the underestimation might be. Given that the necessary computations are

straightforward, using the correct approach presented in this article is recommended

to be on the “safe side”. The additional computations only involve components that

are already provided by the results of the estimation routine, and we provide free and

open-source software for obtaining the results in practice.

In many situations the underestimation can seriously deteriorate the quality of confi-

dence intervals and statistical tests. Hou et al. (2014), for example, proposed the Wald

test to detect differential item functioning in CDMs, and encountered serious Type I

error inflation (up to 18%). X. Li and Wang (2015) later found that this was caused

by a substantial underestimation of the standard errors with the marginal maximum

likelihood estimation (MMLE) approach. Although it is not clear whether the under-

estimation they observed in their study was caused by the incorrect computation of

the standard errors or otherwise, it demonstrates how the performance of the Wald

test can be negatively affected by underestimated standard errors (or the entire co-

variance matrix). Several studies in the field of item response theory (IRT) have also

demonstrated the influence of the estimation approach on the quality of procedures

that require a covariance matrix. Woods, Cai, and Wang (2012), for example, found

better controlled Type I error in the Wald test to detect differential item functioning

in the Rasch model if the covariance matrix was computed using the supplemented EM

algorithm (Cai, 2008).

Other statistical issues might also cause biases in standard errors for CDMs when using

MMLE. Similar to traditional latent class analysis, for example, parameter estimates

sometimes converge towards the boundary of the parameter space for small data sets.

This causes numerical problems in the calculation of the information matrix, which is

inverted to get the covariance matrix. Posterior mode (PM) estimation has been sug-

gested to overcome these problems (DeCarlo, 2011; Garre & Vermunt, 2006). However,
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in the CDM literature and in some frequently used software packages, the traditional

maximum likelihood (ML) estimation is prevalent. Therefore, we will focus on the

estimation of standard errors in this framework for this article.

The rest of the article is organized as follows. The next section contains a short formal

introduction of CDMs before the correct estimation of the standard errors is discussed

in detail. Later in that section, the G-DINA model will be introduced for the remaining

aspects discussed in the article. In the section after next, the quality of the standard

errors is investigated using simulation studies and a real data example. The last section

concludes with a discussion. To simplify notation and language, we will focus on CDMs

for dichotomous responses in the context of educational assessments for the rest of the

article. Please note, however, that the calculation of the standard errors described here

holds for all types of CDMs estimated via MMLE.

3.2 Cognitive diagnosis models

The primary goal in cognitive diagnosis modeling is to infer mastery or nonmastery of

K attributes from the responses of each individual to J items in an assessment. For

this task a J×K Q-matrix (Tatsuoka, 1983) must be specified to identify the cognitive

specification of the items, where Q = {qjk} and qjk = 1 if attribute k (k = 1, . . . , K)

is required to solve item j (j = 1, . . . , J), and 0 otherwise. The Q-matrix requires

domain-specific knowledge, and should ideally be specified together with experts from

the field for which the assessment will be needed.

Let Xi = {Xij} be the binary response pattern of individual i (i = 1, . . . , N). The

conditional probability of a correct response to item j given the unobserved attribute

profile αi = {αik} is parametrized using a specific item response function, denoted

by Pj(αi) = P(Xij = 1|αi). Furthermore, let δj denote the vector of all parameters

used to specify Pj(αi) and, let δ = (δ1, . . . , δJ)
� denote the vector of parameters that

contains all item parameters. For reasons of consistency, it is usually suggested to

estimate δ and αi using a marginal maximum likelihood approach (de la Torre, 2009;

Neyman & Scott, 1948). The marginal probability is given by the sum over all L = 2K

possible attribute patterns, called latent classes:

P(Xi = xi) =
L∑
l=1

p(αl) · P(Xi = xi|αl),

where P(Xi = xi|αl) =
∏J

j=1 Pj(αl)
xij [1− Pj(αl)]

1−xij .

A distribution p(αl) is imposed to specify a prior probability for each latent class.

Let π be the vector of all parameters used in the model that specifies p(αl). For this
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article, we choose a saturated model by estimating a probability πl = p(αl) for each

latent class, where πL = 1−∑L−1
l=1 πl. Different models can be assumed to reduce the

number of parameters (de la Torre & Douglas, 2004; Rupp et al., 2010).

Thus, let ϑ = (δ,π)� be the complete vector of all model parameters of a CDM, and

further p = dim(δ) and q = dim(π). The marginal log-likelihood that is maximized to

estimate ϑ given the data sample X = {xi} for individuals i = 1, . . . , N , is given by

�(ϑ;X) = log [L(ϑ;X)] = log
N∏
i=1

L∑
l=1

πl · P(Xi = xi|αl),

and can be maximized using the EM algorithm as described in de la Torre (2009). The

estimation procedure provides the posterior probability for each latent class, P̂(αl|xi),

that can be used to find π̂ and the attribute profiles α̂i. However, the aim of this article

is to discuss the estimation of standard errors for the estimated model parameters ϑ̂,

which will be the focus of the next section.

3.2.1 Theory and estimation of standard errors

The standard errors of the estimated model parameters ϑ̂ =
(
δ̂, π̂
)�

can be computed

as the square root of the diagonal elements of the covariance matrix of ϑ̂. Regarding

the two types of parameters, δ and π, the covariance matrix of ϑ̂ can be divided into

four blocks:

Cov(ϑ̂) = Vϑ =

(
Vδ Vδ,π

Vπ,δ Vπ

)
,

where Vδ = Cov(δ̂) is the covariance matrix of the parameters used to specify the

item response function, Vπ = Cov(π̂) is the covariance matrix of the parameters used

to specify the distribution of the latent classes and Vδ,π = V �
π,δ = Cov(δ̂, π̂) is the

covariance matrix between the two types of parameters.

Complete and incomplete information matrix

The (asymptotic) covariance matrix of ϑ̂ is equal to the inverse of the information

matrix, Vϑ = I−1
ϑ , which is defined as

Iϑ = E
[
ψ(ϑ)ψ(ϑ)�

]
, (3.1)
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where

ψ(ϑ) =
(
ψ(δ), ψ(π)

)�
=

(
∂�(ϑ;x)

∂δ1
, . . . ,

∂�(ϑ;x)

∂δp
,
∂�(ϑ;x)

∂π1
, . . . ,

∂�(ϑ;x)

∂πq

)�

is the score function (i.e., the partial derivatives of the log-likelihood with respect to

all model parameters).

Similar to the covariance matrix, the information matrix can be divided into four

blocks:

Iϑ =

(
Iδ Iδ,π

Iπ,δ Iπ

)
= E

[(
ψ(δ)ψ(δ)� ψ(δ)ψ(π)�

ψ(π)ψ(δ)� ψ(π)ψ(π)�

)]
,

where Iδ is the information matrix for the parameters used to specify the item re-

sponse function, Iπ is the information matrix for the parameters used to specify the

distribution of the latent classes and Iδ,π = I�
π,δ is the information matrix for the two

types of parameters.

In many practical applications (e.g., tests for differential item functioning) researchers

are primarily interested in the parameters δ, and thus they incorrectly compute the

covariance matrix for δ̂ via the inverse of the incomplete information matrix Iδ. This

approach, however, considers only a submatrix of the complete information matrix

including all model parameters Iϑ. It is important to note that, since δ and π are

generally not mutually independent in CDMs (i.e., Iδ,π = I�
π,δ �= 0), inverting the

incomplete information matrix Iδ systematically underestimates the standard errors

for δ̂. In some cases, only the item-wise information matrix Iδj (a submatrix of Iδ)

is computed and inverted to get the covariance matrix of the parameter vector δj.

However, similar to traditional IRT models (Yuan, Cheng, & Patton, 2014), Iδ is not

block-diagonal. And thus, inverting the item-wise information matrix underestimates

the standard errors even stronger compared to the incomplete information matrix ap-

proach.

The above statement can be derived in a formal way using matrix algebra. Let (Iδ)
−1

be the covariance of δ̂, based on the incomplete information matrix and let Vδ be the

covariance of δ̂, based on the complete information matrix. From blockwise matrix

inversion (see e.g., S. Banerjee & Roy, 2014), it follows, that

Vδ = (Iδ)
−1 +Δ, (3.2)

1The inverse exists in many practical cases. However, it does not exist, e.g., when the parameters
lie at the boundary of the parameter space (but estimating standard errors for such parameters is not
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then the diagonal elements of all terms in (3.2) are positive (see Appendix B.1), which

implies, √[
Vδ
]
r,r

>
√[

(Iδ)−1
]
r,r

r = 1, . . . , p.

This means that the standard errors of the estimated parameters δ̂ are consistently un-

derestimated if the incomplete or the item-wise – instead of the complete – information

matrix is used. Later, in Section 3.3, we will demonstrate by means of simulations that

standard errors computed using the complete information matrix are of better quality.

But first, we will discuss two important techniques to estimate the information matrix.

Estimating the information matrix and standard errors

Computing the (expected) information matrix by evaluating the expected value at the

maximum likelihood estimate is infeasible for large assessments. The expectation must

be taken over the support of the random response vector xi, which becomes very large

even if J (the number of items) is only moderately large (e.g., J = 25) and computation

becomes very slow due to memory limitation.

Thus, the information matrix is often estimated by the empirical counterpart of Equa-

tion 3.1, given by

Jϑ,OPG =
1

N

[
N∑
i=1

ψ(ϑ;xi)ψ(ϑ;xi)
�
] ∣∣∣∣∣

ϑ=̂ϑ

, (3.3)

also known as the “outer product of gradients” (OPG) estimator, where ψ(ϑ;xi) is the

contribution of individual i to the score function.

Another estimator follows from the fact that under the true parameter values and

standard regularity conditions the information matrix (as defined in Equation 3.1) is

equivalent to the expected value of the negative Hessian matrix of the log-likelihood.

Thus, the information matrix may also be estimated via

Jϑ,Hess = − 1

N

[
N∑
i=1

∂2�(ϑ;xi)

∂ϑ∂ϑ�

] ∣∣∣∣∣
ϑ=̂ϑ

. (3.4)

meaningful anyway), or when the latent classes are not completely identified by the items in the test.

with Δ = (Iδ)
−1Iδ,πVπIπ,δ(Iδ)

−1. If the inverse of Iϑ exists1 and Iδ,π = I�
π,δ �= 0,
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and, thus, the two estimators differ by

Jϑ,Hess − Jϑ,OPG =
1

N

[
N∑
i=1

1

L(ϑ;xi)

∂2L(ϑ;xi)

∂ϑ∂ϑ�

] ∣∣∣∣∣
ϑ=̂ϑ

.

Often (3.3) is easier to compute, but (3.4) promises a better finite sample approximation

of the information matrix (McLachlan & Krishnan, 2007).

From the above definitions, the standard error for the parameter ϑr (r = 1, . . . , p+ q),

can be computed via the inverse of the complete information matrix, using

ŝe(ϑ̂r) =
√[

(Jϑ,OPG)−1
]
r,r

or ŝe(ϑ̂r) =
√[

(Jϑ,Hess)−1
]
r,r
,

estimated via the outer-products of gradients or the Hessian matrix, respectively. Since

the differences between the OPG and the Hessian approach turned out to be negligibly

small for simple CDMs (i.e., for the DINA model introduced below, but results are not

shown), we will only consider the OPG estimator for the rest of the article.

In Section 3, the improvement of the quality of the standard errors by using the inverse

of the complete information matrix will be illustrated using three specific versions of

CDMs. Therefore, we will briefly introduce the generalized DINA model framework

proposed by de la Torre (2011), which covers other CDMs as special cases. For a

comprehensive description of the framework, its relation to other general CDMs and

parameter estimation, we refer the reader to the original article.

3.2.2 The G-DINA model

A comprehensive and very flexible version of a CDM is the generalized deterministic

input, noisy “and” gate (G-DINA) model (de la Torre, 2011). Due to its general

formulation, it includes many other (more restrictive) CDMs as special cases.

For each item in the assessment, the individuals are separated into 2K
∗
j latent groups,

where K∗
j is the number of attributes required by item j (i.e., the sum of the jth row in

the Q-matrix). Presence or absence of all the other attributes does not affect the group

membership of an individual. Consequently, the attribute vector αi can be reduced to

the attributes required by the particular item.

Let α∗
ij = (αi1, . . . , αiK∗

j
) denote the reduced attribute vector of individual i for item

j. The conditional probability to answer item j correctly is then defined by the item

response function

Pj(α
∗
ij) = h−1

⎛⎝δj0 + K∗
j∑

k=1

δjkαik +

K∗
j −1∑
k=1

K∗
j∑

k′=k+1

δjkk′αikαik′ + . . .+ δj12...K∗
j

K∗
j∏

k=1

αik

⎞⎠ ,

In practice, however, (3.3) and (3.4) are evaluated at the estimated parameter values

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Cognitive diagnosis models 61

where h(·) is a link function, such as identity, log or logit.

The δj are the model parameters of item j. In case of the identity link, δj0 represents the

baseline probability for correctly answering item j when none of the required attribute

has been mastered (i.e., a lucky guess); δjk is the main effect that increases (or in

rare cases decreases) the probability for correctly answering item j when attribute k

has been mastered; and the rest of the parameters represent interaction terms that

can increase or decrease the response probability when two or more of the required

attributes have been mastered.

Other CDMs can be obtained by restricting the parameters in the G-DINA model. An

intuitive, simple and parsimonious CDM is the deterministic input, noisy “and” gate

(DINA; Haertel, 1989; Junker & Sijtsma, 2001) model. In the DINA model the individ-

uals are separated into two latent groups, depending on whether they have mastered all

the attributes required to solve the item or not. Thus, the DINA model is a completely

noncompensatory (or conjunctive) model, which means that having mastered only part

of the required attributes does not increase the probability of answering the item cor-

rectly. It can be obtained from the G-DINA model by restricting all parameters except

δj0 and δj12...K∗
j
to zero. Thus, = gj is called the guessing probability, since individuals

that have not mastered all attributes required by the item can only guess the correct

response. On the other hand, 1 − (δj0 + δj12...K∗
j
) = sj is called the slip probability,

since in this probabilistic model individuals that have mastered all attributes required

by the item may still slip and give the wrong response.

Another CDM that can be obtained from the G-DINA model is the additive CDM

(A-CDM). It is slightly more flexible than the DINA model because the conditional

response probability can increase (or in some cases decrease) for each attribute that

has been mastered. It can be obtained from the G-DINA model by restricting all

interaction parameters to zero.

Score contributions for parameters in the G-DINA model

To estimate the information matrix of the model parameters of the G-DINA model via

OPG, the contributions of individual i to the score function, ψ(ϑ;xi), are required.

They are given by the first-order derivative of the casewise log-likelihood contribution

with respect to the model parameters:

ψ(ϑ;xi) =
∂�(ϑ;xi)

∂ϑ
=

∂ logL(ϑ;xi)

∂ϑ

=
1

L(ϑ;xi)
· ∂L(ϑ;xi)

∂ϑ
=

1

L(ϑ;xi)
· ∂

∂ϑ

(
L∑
l=1

πl · P(xi|αl)

)
.
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Using formula (A6) from the Appendix in de la Torre (2009) for the partial derivative

of the conditional likelihood, the score contributions of the parameters of item j can

be computed via

∂�(ϑ;xi)

∂δj
=

L∑
l=1

P(αl|xi) ·
[

xij − Pj(α
∗
lj)

Pj(α∗
lj)(1− Pj(α∗

lj))

]
· ∂Pj(α

∗
lj)

∂δj
. (3.5)

To estimate the score contributions, we plug-in the estimated parameters δ̂j to get

Pj(α
∗
lj) and use P(αl|xi) that is also available from the estimation procedure. The last

term in Equation (3.5) depends on the type of CDM that is used. It is also possible

to compute the score contributions directly for the conditional response probabilities.

In this case, the last term in Equation (3.5) needs to be derived with respect to the

conditional response probability of interest.

For the score contributions of the latent class probabilities, the constraint πL = 1 −∑L−1
l=1 πl must be taken into account, and thus,

∂�(ϑ;xi)

∂πl
=

1

L(ϑ;xi)

∂

∂πl

(
L−1∑
l=1

πl · P(xi|αl) + πL · P(xi|αL)

)

=
1

L(ϑ;xi)

∂

∂πl

(
L−1∑
l=1

πl · P(xi|αl) +

(
1−

L−1∑
l=1

πl

)
· P(xi|αL)

)

=
1

L(ϑ;xi)

∂

∂πl

(
L−1∑
l=1

πl ·
(
P(xi|αl)− P(xi|αL)

)
+ P(xi|αL)

)

=
1

L(ϑ;xi)

(
P(xi|αl)− P(xi|αL)

)
.

Since the parameters in the last iteration of the EM algorithm are computed from the

posterior values P(αl|xi), it is more precise to also compute the score function for the

latent class probabilities using the posterior values, via

∂�(ϑ;xi)

∂πl
=

1

πl

(
P(αl|xi)− P(αL|xi)

)
.

Nonidentifiability of latent classes

In the theory about standard errors of parameters that is presented above, it is assumed

that the inverse of the complete information matrix Iϑ exists. This, however, is not

always the case in practical applications due to different causes. The most common

cause has previously been discussed in Haertel (1989) as the nonidentifiability of latent

classes. The problem arises whenever a test does not involve a single-attribute item for
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each of the K attributes (see Chiu, Douglas, & Li, 2009, for a theoretical discussion of

the completeness of a Q-matrix in the DINA model, and Chiu & Köhn, 2015, for CDMs

in general). The G-DINA model can still be estimated, but some of the latent classes

are not identified and the estimates of the corresponding latent class probabilities

are equivalent. Moreover, when computing the covariance matrix using the complete

information matrix, the corresponding columns and rows in the information matrix are

alike (i.e., they are linearly dependent). Thus, the information matrix is nonsingular

and cannot be inverted.

To avoid problems of identification in practice, it is therefore recommended that, when-

ever possible a single-attribute item is included for each of the K attributes when de-

veloping new tests for cognitive diagnostic assessment. For researchers who perform a

cognitive diagnostic analysis of data from an existing assessment (so-called retrofitting),

the inversion problem can be circumvented by pooling latent classes that cannot be

separated from each other.

3.3 Illustrations

Following the theoretical derivation of the underestimation of the standard errors –

resulting from the inversion of the incomplete or the item-wise information matrix

– the goal of this section is to illustrate the extent of this underestimation, and its

effect on confidence intervals for the parameter estimates. In addition, we show for

an exemplary real data set how much the standard errors may be underestimated in

practice when the wrong methods are used. For both illustrations, the OPG estimator

was used to estimate the covariance matrix of the model parameter estimates.

3.3.1 Coverage study

In the first study, we compare the quality of the standard error estimates based on the

complete, the incomplete, and the item-wise information matrix (see Section 3.2.1), by

estimating the coverage probability of the true parameter in a Wald-type confidence

interval that uses a normal approximation given by
[
ϑ̂± zα

2
· ŝe(ϑ̂)

]
, and by computing

the empirical bias of the standard errors.

Four different sample sizes (N = 500, 1000, 2000, 5000) were investigated using the Q-

matrix given in Table 3.1. The Q-matrix included five attributes and was constructed

such that each attribute was measured equally often (equal row sums in the table)

and that the number of items that required the same number of attributes was equally

distributed (i.e., five single-attribute items, five two-attribute items, and five three-

attribute items). Thus, the Q-matrix represented a test with J = 15 items.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



64 Estimation of standard errors in CDMs

Table 3.1: Transposed Q-matrix used in the simulation study.

Items

Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

k

α1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 6

α2 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 6

α3 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 6

α4 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 6

α5 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 6∑
j 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

The DINA model and the A-CDM were used to generate response data. For each item,

the true value of the baseline parameter (δj0) was set to 0.2. In case of the DINA model,

the true value of the interaction parameter between all attributes required by the item

(δj12...K∗
j
) was set to 0.6. Therefore, the guessing and the slip probabilities were both

equal to 0.2. In case of the A-CDM, the main effect parameters were set to δjk =

0.6/K∗
j . Thus, with each additionally mastered attribute, the conditional response

probability increased by the same amount. The K attributes for each individual were

sampled independently from a Bernoulli distribution with probability P(αk = 1) = 0.5,

for all k = 1 . . . K. The joint distribution of the attributes (i.e., the latent class

distribution) is then given by a categorical distribution with equal probabilities πl =

P(αl) = 1/(2K). Responses that were simulated under the DINA model were analyzed

using the DINA and the G-DINA model using the identity link. Note, that the G-

DINA is also correct for data that were generated under the DINA model. It was

fitted in addition to the DINA model because in practice the true model is usually

unknown. However, in this situation the G-DINA model is overspecified, due to the

many additional parameters estimated, for which the true values are zero according

to the data generating model. Responses that were simulated under the A-CDM were

accordingly analyzed using the A-CDM and the G-DINA model using the identity

link. Again, the G-DINA is also correct – yet overspecified – for data generated under

the A-CDM. To estimate the models and the standard errors, the EM algorithm was

implemented in R (R Core Team, 2016) based on the description in de la Torre (2009),

but including our new suggestions on how the standard errors should be estimated.

Figures 3.1 and 3.2 illustrate the coverage probabilities for the data generated under

the DINA model and the A-CDM, respectively. For all sample sizes and models, the

coverage probabilities were computed for the δ parameters using standard errors based

on the complete information matrix Jϑ (correct approach), and the incomplete infor-

mation matrix Jδ and the item-wise information matrix Jδj (incorrect approaches). It

turned out that the asymptotically expected standard errors of the item parameters are

identical across items that require the same number of attributes. In the DINA model,
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Figure 3.1: Coverage probabilities of 95% Wald-type confidence intervals for data generated under the
DINA model are illustrated (on the y-axis) separately for parameters of items that require the same
number of attributes (= parameter groups on the x-axis) using three different calculation methods for
the standard errors. For ease of readability, values sufficiently close to the nominal coverage probability
are depicted as solid circles, all others as empty circles.

for example, the baseline (guessing) probabilities of all single-attribute items share the

same asymptotic standard error, no matter which of the attributes is required. This

also holds for other item parameters, items that require more attributes and differ-

ent models. Therefore, the coverage probabilities were averaged over the parameters

within those groups, which are illustrated on the x-axis of the graph. The parameter

group “0”, for example, represents the baseline probability of all single-attribute items.

The parameter group “111” represents the parameter of the three-way interaction of

all three-attribute items.

By definition, the coverage probability of a 95% confidence interval has an expected

nominal coverage rate of 95%. However, due to sampling error, the estimated coverage

probabilities may randomly deviate from this nominal value. To achieve a high pre-

cision of the estimated coverage probabilities, each configuration was repeated 10,000

times. Assuming an exact binomial distribution for the coverage probabilities, the

sampling error was equal to
√

0.95·0.05
10,000

≈ 0.002. Thus, based on a Wald-type confidence

interval, we would consider coverage probabilities within
[
94.6%, 95.4%

]
as sufficiently

close to the nominal rate. Numbers within this interval are depicted with solid circles
(otherwise empty circles) in Figures 3.1 and 3.2.
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Table 3.2: Coverage probabilities of 95% Wald-type confidence intervals and average estimated bias
of the standard errors for data generated under the DINA model and fitted to the DINA model.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.9261 0.7877 0.7571 0.0061 0.0248 0.0275

1 0.9315 0.8902 0.8662 0.0056 0.0147 0.0191

00 0.9468 0.9148 0.8974 0.0004 0.0037 0.0050

11 0.9256 0.9057 0.8849 0.0044 0.0094 0.0136

000 0.9541 0.9397 0.9312 −0.0006 0.0007 0.0014

111 0.9334 0.9010 0.8796 0.0036 0.0127 0.0173

5000 0 0.9556 0.8467 0.8289 −0.0005 0.0051 0.0057

1 0.9511 0.9328 0.9228 −0.0002 0.0016 0.0024

00 0.9511 0.9213 0.9126 0.0000 0.0009 0.0011

11 0.9504 0.9399 0.9299 0.0000 0.0008 0.0016

000 0.9504 0.9423 0.9394 0.0000 0.0002 0.0003

111 0.9494 0.9313 0.9262 0.0000 0.0019 0.0024

Additionally, Tables 3.2 to 3.5 list the exact values of the coverage probabilities and

the empirical bias of the standard errors for the smallest (N = 500) and the largest

(N = 5000) sample sizes (the intemediate sample sizes were omitted for brevity, but

can be requested from the corresponding author) and each parameter group (labeled

by η). The average empirical bias corresponds to the average of the empirical biases

over all replications, that were computed by subtracting the estimated standard errors

ŝe(ϑ̂r) from the empirical standard error of the estimated parameter values over all

replications.

Figure 3.1 shows the coverage probabilities for the data generated under the DINA

model. When the DINA model was used to analyze the data (see left column in

Figure 3.1 and exact values reported in Table 3.2), the coverage probabilities for the

standard errors based on the complete information matrix (solid line) were reasonably

close to the expected coverage rate for small data samples, and converged quickly

toward the nominal rate with increasing sample size N . The coverage rates for the

standard errors based on the incomplete (dashed line) or the item-wise (dotted line)

information matrix, however, were systematically smaller than the nominal coverage

probability, particularly for the first parameter groups. Even for the largest sample size

considered, their coverage probability does not converge towards the nominal rate. This

is caused by the structural underestimation of the standard errors discussed earlier. We

observed the largest underestimation for the baseline probabilities of single-attribute

items (parameter group “0”). For the other parameters, the difference to the correct
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Table 3.3: Coverage probabilities of 95% Wald-type confidence intervals and average estimated bias
of the standard errors for data generated under the DINA model and fitted to the G-DINA model.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.7666 0.6343 0.5850 0.0304 0.0440 0.0482

1 0.8162 0.7782 0.7198 0.0346 0.0403 0.0483

00 0.8715 0.8403 0.8121 0.0194 0.0231 0.0269

10 0.8244 0.7861 0.7465 0.0441 0.0512 0.0583

01 0.8265 0.7871 0.7477 0.0444 0.0515 0.0587

11 0.8250 0.7960 0.7527 0.0622 0.0702 0.0824

000 0.9040 0.8335 0.7982 0.0443 0.0643 0.0712

100 0.8981 0.8413 0.8022 0.0505 0.0790 0.0903

010 0.8969 0.8368 0.7984 0.0534 0.0854 0.0973

001 0.8973 0.8383 0.7993 0.0508 0.0801 0.0917

110 0.8920 0.8415 0.8041 0.0548 0.0980 0.1159

101 0.8829 0.8312 0.7906 0.0643 0.1069 0.1252

011 0.8913 0.8407 0.8014 0.0549 0.0994 0.1175

111 0.9130 0.8820 0.8603 0.0411 0.0999 0.1270

5000 0 0.9449 0.8213 0.7910 0.0004 0.0063 0.0073

1 0.9444 0.9319 0.9082 0.0006 0.0018 0.0036

00 0.9451 0.9423 0.9394 0.0004 0.0005 0.0007

10 0.9429 0.9304 0.9243 0.0009 0.0024 0.0030

01 0.9432 0.9301 0.9235 0.0010 0.0025 0.0031

11 0.9426 0.9402 0.9327 0.0014 0.0019 0.0030

000 0.9402 0.9361 0.9342 0.0017 0.0019 0.0021

100 0.9399 0.9377 0.9357 0.0027 0.0029 0.0033

010 0.9391 0.9369 0.9348 0.0028 0.0030 0.0034

001 0.9390 0.9370 0.9348 0.0028 0.0030 0.0034

110 0.9368 0.9337 0.9313 0.0044 0.0051 0.0057

101 0.9365 0.9340 0.9314 0.0046 0.0053 0.0059

011 0.9394 0.9363 0.9340 0.0039 0.0047 0.0053

111 0.9366 0.9355 0.9329 0.0061 0.0066 0.0077

approach is smaller, but still lower than for the correct approach and notably below the

nominal rate. A similar pattern can be observed when the G-DINA model was used to

analyze the data generated under the DINA model (see right column in Figure 3.1 and

exact values reported in Table 3.3). However, for smaller sample sizes the coverage

probabilities were generally estimated considerably below the nominal coverage rate

of 95%. This artifact may be explained by several circumstances. First, the normal

approximation underlying the Wald-type confidence intervals might fail, particularly

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



68 Estimation of standard errors in CDMs

A−CDM G−DINA

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●● ●

●
● ●

●

●

●

●● ●

●
● ●

●

●

●

●
●

●

●

●
●

● ● ● ●● ●● ● ●

●

●

●

●● ●● ● ●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●
●

●● ●
●

● ●

●●● ●

●

●

●
● ●●

●
●

● ●

●●
●

●

●

●

●

● ●● ●

●

● ●

●●
●

●

●

●
● ● ●● ●● ● ●

●●
●

●
●

●

●
● ●●

●● ● ● ●●
●

●
●

●

●
● ●● ●

●

● ● ●●
●

●
●

● ● ● ●● ●● ● ● ●●● ● ●

●

●
● ●● ●● ● ● ●●● ● ●

●

●
● ●● ●

●

● ● ●●● ● ●

50

60

70

80

90

100

50

60

70

80

90

100

50

60

70

80

90

100

50

60

70

80

90

100

N
 = 500

N
 = 1000

N
 = 2000

N
 = 5000

0 1 00 10 01 000 100 010 001 0 1 00 10 01 11 000 100 010 001 110 101 011 111

Parameter group

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 (i
n 

%
)

Information
matrix
●

●

●

complete

incomplete

item−wise

Figure 3.2: Coverage probabilities of 95% Wald-type confidence intervals for data generated under
the A-CDM are illustrated (on the y-axis) separately for parameters of items that require the same
number of attributes (= parameter groups on the x-axis) using three different calculation methods for
the standard errors. For ease of readability, values sufficiently close to the nominal coverage probability
are depicted as solid circles, all others as empty circles.

for the baseline probabilities that are restricted between zero and one. Second, for

smaller data sets and more complex models, the conditional response probabilities and

the parameters used to specify the attribute distribution are often estimated on the

boundary of the parameter space. As mentioned earlier, this causes numerical problems

in the calculation of the information matrix. Finally, the ratio between the number of

estimated parameters per observation is larger for more general models. Thus, inferior

asymptotic convergence has to be reckoned with the G-DINA when compared to the

DINA model. Nevertheless, the complete information matrix approach clearly provided

more accurate results in all conditions considered.

Similar and related conclusions can be drawn from the average empirical biases re-

ported in Tables 3.2 and 3.3. They were (in absolute terms) always smaller when the

complete information matrix instead of the incomplete or the item-wise information

matrix approaches were used. Please note, that when the correct DINA model was

fitted to the simulated data (see values reported in Table 3.2), and when the stan-

dard errors were estimated with the complete information matrix approach, the bias

almost completely vanished for the larger sample size, whereas with the two incorrect
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Table 3.4: Coverage probabilities of 95% Wald-type confidence intervals and average estimated bias
of the standard errors for data generated under the A-CDM and fitted to the A-CDM.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.6698 0.5205 0.4813 0.0496 0.0633 0.0678

1 0.7137 0.6659 0.6030 0.0687 0.0757 0.0843

00 0.7999 0.7179 0.6852 0.0268 0.0352 0.0382

10 0.8463 0.8096 0.7778 0.0252 0.0308 0.0350

01 0.8484 0.8124 0.7817 0.0247 0.0302 0.0343

000 0.8817 0.8153 0.7923 0.0139 0.0243 0.0270

100 0.8971 0.8526 0.8299 0.0134 0.0217 0.0250

010 0.8972 0.8521 0.8304 0.0142 0.0225 0.0258

001 0.8973 0.8525 0.8294 0.0137 0.0220 0.0252

5000 0 0.9343 0.7922 0.7111 0.0016 0.0099 0.0127

1 0.9340 0.9307 0.8597 0.0025 0.0029 0.0087

00 0.9380 0.8411 0.8200 0.0009 0.0061 0.0069

10 0.9424 0.9341 0.9102 0.0007 0.0014 0.0031

01 0.9442 0.9357 0.9119 0.0006 0.0013 0.0029

000 0.9439 0.8878 0.8815 0.0005 0.0041 0.0044

100 0.9483 0.9403 0.9296 0.0003 0.0010 0.0017

010 0.9453 0.9373 0.9258 0.0004 0.0011 0.0019

001 0.9471 0.9394 0.9300 0.0002 0.0008 0.0016

approaches still had significant biases at the larger sample size. This, however, was not

the case when the overspecified G-DINA model was fitted to the data simulated under

the DINA model (see values reported in Table 3.3). The average estimated biases re-

ported for the complete information matrix approach did not coverage zero, although

it was always smaller than for the incomplete and the item-wise approaches. Despite

this finding, the complete information matrix approach provided the most accurate

standard error estimates of all estimation approaches considered in this study.

Figure 3.2 shows the coverage probabilities for the data generated under the A-CDM

(for exact values, see Tables 3.4 and 3.5). For the same reasons as discussed above,

the coverage probabilities were estimated below the nominal rate for smaller samples.

As the sample size increased, the coverage probabilities computed with the standard

errors based on the complete information matrix again approached the nominal rate

for the A-CDM and the G-DINA model. The coverage probabilities computed with the

standard errors based on the incomplete or the item-wise information matrix, however,

were again systematically underestimated. Overall, the complete information matrix

approach again provided more accurate results across all conditions considered.
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Table 3.5: Coverage probabilities of 95% Wald-type confidence intervals and average estimated bias
of the standard errors for data generated under the A-CDM and fitted to the G-DINA model.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.7126 0.5377 0.4815 0.0453 0.0614 0.0678

1 0.7497 0.6909 0.6029 0.0639 0.0720 0.0843

00 0.8160 0.7332 0.6877 0.0322 0.0412 0.0464

10 0.8017 0.7649 0.7190 0.0679 0.0762 0.0853

01 0.8027 0.7663 0.7225 0.0680 0.0762 0.0854

11 0.7604 0.7300 0.6874 0.1240 0.1344 0.1476

000 0.8890 0.8336 0.7918 0.0228 0.0405 0.0479

100 0.8622 0.7997 0.7579 0.0612 0.0913 0.1048

010 0.8583 0.7933 0.7516 0.0642 0.0957 0.1095

001 0.8587 0.7978 0.7562 0.0628 0.0922 0.1056

110 0.8312 0.7598 0.7120 0.1125 0.1642 0.1867

101 0.8344 0.7640 0.7145 0.1136 0.1649 0.1873

011 0.8269 0.7573 0.7087 0.1168 0.1676 0.1899

111 0.8049 0.7044 0.6430 0.1607 0.2422 0.2772

5000 0 0.9417 0.7945 0.7111 0.0008 0.0098 0.0127

1 0.9355 0.9322 0.8597 0.0023 0.0027 0.0087

00 0.9453 0.9013 0.8898 0.0005 0.0040 0.0047

10 0.9402 0.9335 0.9234 0.0015 0.0024 0.0037

01 0.9393 0.9332 0.9226 0.0016 0.0025 0.0038

11 0.9393 0.9340 0.9300 0.0029 0.0041 0.0048

000 0.9410 0.9219 0.9184 0.0017 0.0039 0.0042

100 0.9372 0.9299 0.9262 0.0038 0.0051 0.0058

010 0.9365 0.9283 0.9244 0.0042 0.0056 0.0063

001 0.9362 0.9290 0.9253 0.0040 0.0053 0.0060

110 0.9315 0.9267 0.9243 0.0081 0.0095 0.0103

101 0.9323 0.9275 0.9247 0.0081 0.0094 0.0102

011 0.9299 0.9254 0.9228 0.0087 0.0101 0.0109

111 0.9259 0.9234 0.9207 0.0166 0.0178 0.0189

The average empirical biases reported in Tables 3.4 and 3.5 were again always smaller

with the complete information approach for all parameter groups and sample sizes.

However, as discussed above for the data simulated under the DINA model, the bias

did not converge toward zero for the larger sample size, when the overspecified G-DINA

model was used to estimate the data simulated under the A-CDM (see values reported

in Table 3.5).
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Table 3.6: Transposed Q-matrix used for analyzing the elementary probability theory data.

Items

Attributes 1 2 3 4 5 6 7 8 9 10 11 12
∑

k

pb 1 0 0 0 1 1 1 1 1 0 1 1 8

cp 0 1 0 0 1 1 0 0 0 1 1 0 5

un 0 0 1 0 0 0 1 1 0 0 0 1 4

id 0 0 0 1 0 0 0 0 1 1 1 1 5∑
j 1 1 1 1 2 2 2 2 2 2 3 3

3.3.2 Empirical example

To illustrate the practical importance of estimating standard errors via the complete

information matrix, data from a real assessment was analyzed using CDMs. The data

stem from a learning experiment at the University of Tuebingen in Germany and is

available in the R package pks (Heller & Wickelmaier, 2013). The participants were

required to answer 12 items about elementary probability theory. For example, “A

box contains 30 marbles in the following colors: 8 red, 10 black, 12 yellow. What is

the probability that a randomly drawn marble is yellow?”. Four different attributes

(concepts) were tested: How to calculate

• the classic probability of an event (pb),

• the probability of the complement of an event (cp),

• the probability of the union of two disjoint events (un),

• the probability of two independent events (id).

These concepts were combined to form the 12 items. Therefore, the Q-matrix (see

Table 3.6) was defined by the design of the items. The first four items required only

one attribute, the items 5 to 10 required two attributes and the items 11 and 12 required

three attributes. For this illustration, the responses of 504 participants from the first

part of the experiment were analyzed.

The data was fitted using the DINA, the A-CDM and the G-DINA model with the

resulting BIC values of 5200.46 (df = 39), 5154.58 (df = 49) and 5241.70 (df =

63), respectively. The results of the A-CDM – which had the lowest BIC value –

are illustrated in Table 3.7. The table summarizes the estimated parameters, the

corresponding standard errors based on the complete, the incomplete and the item-

wise information matrix, and the relative change in the standard errors between the

correct and the two incorrect approaches (in parentheses).
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Table 3.7: Estimates and standard errors of parameters for the elementary probability theory data.
Numbers in brackets correspond to the relative change to the standard errors based on the complete
information matrix.

Standard errors

Item Attribute Estimate Complete Incomplete Item-wise

1 baseline 0.224 0.065 0.061 (−0.071) 0.052 (−0.203)

pb 0.710 0.067 0.063 (−0.061) 0.055 (−0.186)

2 baseline 0.275 0.105 0.080 (−0.241) 0.068 (−0.356)

cp 0.699 0.105 0.081 (−0.232) 0.069 (−0.346)

3 baseline 0.097 0.060 0.055 (−0.082) 0.048 (−0.194)

un 0.864 0.061 0.056 (−0.082) 0.050 (−0.188)

4 baseline 0.125 0.038 0.035 (−0.072) 0.032 (−0.159)

id 0.837 0.039 0.037 (−0.064) 0.034 (−0.140)

5 baseline 0.201 0.067 0.055 (−0.187) 0.048 (−0.288)

pb 0.364 0.116 0.101 (−0.130) 0.094 (−0.191)

cp 0.293 0.125 0.111 (−0.116) 0.103 (−0.181)

6 baseline 0.194 0.062 0.058 (−0.058) 0.051 (−0.185)

pb 0.462 0.085 0.080 (−0.053) 0.074 (−0.125)

cp 0.308 0.083 0.081 (−0.021) 0.077 (−0.071)

7 baseline 0.278 0.071 0.068 (−0.049) 0.062 (−0.126)

pb 0.292 0.095 0.088 (−0.078) 0.083 (−0.127)

un 0.372 0.116 0.105 (−0.094) 0.097 (−0.164)

8 baseline 0.430 0.087 0.076 (−0.132) 0.063 (−0.277)

pb 0.065 0.095 0.066 (−0.297) 0.059 (−0.371)

un 0.462 0.111 0.088 (−0.212) 0.079 (−0.293)

9 baseline 0.116 0.045 0.043 (−0.042) 0.038 (−0.145)

pb 0.510 0.084 0.079 (−0.060) 0.074 (−0.113)

id 0.154 0.075 0.070 (−0.065) 0.065 (−0.124)

10 baseline 0.083 0.050 0.044 (−0.115) 0.037 (−0.248)

cp −0.056 0.060 0.055 (−0.086) 0.048 (−0.190)

id 0.781 0.036 0.035 (−0.027) 0.034 (−0.062)

11 baseline 0.053 0.049 0.045 (−0.086) 0.038 (−0.229)

pb 0.010 0.106 0.086 (−0.184) 0.080 (−0.244)

cp −0.037 0.094 0.084 (−0.109) 0.078 (−0.173)

id 0.672 0.034 0.033 (−0.030) 0.032 (−0.060)

12 baseline 0.000 0.039 0.036 (−0.090) 0.029 (−0.269)

pb 0.140 0.469 0.191 (−0.592) 0.169 (−0.640)

un 0.000 0.452 0.181 (−0.600) 0.162 (−0.643)

id 0.660 0.046 0.042 (−0.067) 0.042 (−0.084)

Note. Strongest relative changes are printed in bold letters for better readability.

72 Estimation of standard errors in CDMs

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Discussion 73

For each item, the first parameter estimate represents the baseline probability (i.e., the

probability of correctly answering the item when the attributes required by the item

have not been mastered). Thus, large values for this guessing probability are unusual.

For item 8, however, a value of over 0.4 is reported. A possible explanation is that the

item – “What is the probability of obtaining an odd number when throwing a dice?”

– was not very difficult, even for individuals without knowledge in basic probability

theory. Further parameter estimates represent the amount of increase (or seldom de-

crease) in probability of answering an item correctly when the corresponding attribute

had been mastered. For example, the probability of answering item 1 increased by 0.71

when attribute “pb” had been mastered.

The relative change between the standard errors based on the complete and the incom-

plete information matrix showed substantial differences (highlighted by bold letters in

Table 3.7) for both parameters of the single-attribute item 2, for some of the param-

eters of the two-attribute items 5, 8 and 10, and for some of the parameters of the

three-attribute items 11 and 12. The underestimation of the standard errors based on

the item-wise information matrix was even worse. For 30 out of 34 item parameters

the standard error was underestimated.

It should be noted that ten out of 48 conditional response probabilities and four out

of 16 parameters of the latent class probabilities were estimated at the boundary of

the parameter space (not displayed in Table 3.7). As mentioned earlier, this can cause

numerical problems in computing the information matrix. According to the previ-

ous simulation study, where a similar scenario was investigated (see top-left panel in

Figure 3.2 for the same model and a nearly equal sample size), it must be assumed

that some of the standard errors reported for this data are generally underestimated.

Nevertheless, just like in the simulation study – and as expected from our theoretical

considerations – the additional severe underestimation caused by the wrong computa-

tion of the information matrix can easily be avoided by using the complete information

matrix.

3.4 Discussion

Standard errors are an important measure to quantify the uncertainty of an estimate.

They are required for many different statistical techniques to evaluate model fit or

to check model assumptions. It is therefore crucial in practical research to estimate

standard errors as precisely as possible. In the commonly used approach for computing

standard errors in CDMs, however, the information matrix is based only on those

parameters which are used to specify the item response function. The parameters used

to specify the joint distribution of the attributes (i.e., latent class distribution) are not

incorporated in the computation.
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In this article, we have shown that with this approach, the standard errors for the pa-

rameters of the item response function are systematically underestimated. We therefore

strongly recommend to compute the standard errors based on the complete information

matrix, which also includes the parameters used to specify the latent class distribution.

In addition to the clear theoretical result, we have also illustrated by means of simula-

tions that our approach leads to a higher quality of Wald-type confidence intervals and

lower empirical bias. An additional benefit of using the complete instead of the incom-

plete information matrix is that it also provides the information required to compute

standard errors for the parameters used to specify the latent class distribution.

We assume that the incomplete information matrix approaches have only become

widely used in the CDM literature because previous authors might have assumed that

the off-diagonal elements of the information matrix would have negligible impact under

certain conditions. With respect to the item-wise computation of the standard errors,

the CDM literature may be partially influenced by the traditional IRT literature, where

approaches exist that lead to block diagonal information matrices (e.g., in Thissen &

Wainer, 1982), in which case an item-wise computation of the standard errors is possi-

ble. However for CDMs, as we showed analytically and illustrated with examples, the

complete information matrix approach clearly generates better standard errors than the

incomplete and the item-wise approaches and is computationally well feasible. Sim-

ilar to our results, Yuan et al. (2014) showed that the item-wise computation of the

standard errors in IRT models also leads to undersized standard errors.

In the simulation study, we did not specifically vary design factors, such as the Q-

matrix, the true values of the item parameters, or the latent class distribution. Varying

these factors might positively or negatively affect the severity of underestimation. In

a preliminary study with the DINA model, we found that longer tests and highly dis-

criminating items can alleviate the underestimation. It should be highlighted, however,

that the proposed method for estimating the standard errors cannot make the quality

of the standard errors worse. In practical situations, however, it is difficult (or even

impossible) to control the factors that have a large impact on the underestimation. As

such it is always preferable to compute standard errors using the complete information

matrix.

We note that differences between the approaches are not only expected for the stan-

dard errors, but for the entire covariance matrix of the model parameters (although

not generally in the same direction). Thus, many techniques used to investigate a

fitted model may be affected. The impact of under- or overestimation of the entire

covariance matrix will be multiplied for multivariate methods. It is therefore worth in

any circumstances to estimate standard errors (and also the entire covariance matrix)

from the complete information matrix. As we did not specifically investigate the im-

pact of misestimating the entire covariance matrix on multivariate techniques, it will

be interesting for future research to investigate how much the quality of the covariance

matrix can be improved by using the complete information matrix in computing it.
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The results of the simulation study revealed problems of asymptotic convergence when

more complex models were fitted to smaller data sets. This might partially be caused

by boundary problems that often occur for smaller data sets. DeCarlo (2011) suggested

posterior mode (PM) estimation to overcome these problems. Whether PM estimation

leads to more accurate parameter and standard error estimates than the traditional

ML approach in CDMs was not the scope of this work, but something that can be

investigated in future research. Moreover, the normal approximation of the ML esti-

mates might be more accurate on the real line under the logit link rather than on the

(bounded) probability scale under the identity link. However, this not only concerns

the estimation of standard errors but of the model parameters in general. Therefore,

this is beyond the scope of this manuscript and is not pursued here. It might be of

interest for future research, though, to explore the potential benefits of different link

functions. In general, the results from our simulation study suggest that it is recom-

mended to use simpler models whenever possible and appropriate because it may avoid

boundary problems or problems with asymptotic convergence.

Finally, in the present article, we assumed that the Q-matrix is known or well specified

for an assessment. However, in practice (especially when retrofitting CDMs to existing

data), the Q-matrix may be unknown or misspecified, which can affect parameter

estimation and classification accuracy (de la Torre, 2008; Rupp & Templin, 2007). To

minimize the impact of a misspecified Q-matrix, several methods have been proposed.

De la Torre (2008) proposed an iterative procedure to evaluate the correctness of the

Q-matrix specification in the context of the DINA model. The approach was extended

by de la Torre and Chiu (2016) to apply generally to other CDMs. Other recent

approaches include that of Y. Chen, Liu, Xu, and Ying (2015), which estimates the

Q-matrix of the DINA model using regularization, whereas Chiu (2013) proposed a

nonparametric approach to Q-matrix validation that does not require specifying the

exact form of the CDM, only that the underlying process is conjunctive in nature.

Future research should examine the extent of the impact of Q-matrix mispecifications

on standard error estimation, and whether specific steps can be taken to minimize such

an impact.

3.5 Computational details

The estimation routines used in this study were written in the free and open-source

software R (R Core Team, 2016) for statistical computing. Functions to estimate the

parameters and the standard errors in the G-DINA model are provided in the form

of the add-on package Rcdm, available online at https://github.com/mphili/cdm

under the terms of the GNU General Public License (Version 2 or 3).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



Chapter 4

Detecting DIF in cognitive

diagnosis models

Michel Philipp, University of Zurich

Carolin Strobl, University of Zurich

Achim Zeileis, Universität Innsbruck

Abstract In cognitive diagnosis models (CDMs) – similar as in traditional IRT mod-

eling – differential item functioning (DIF) needs to be investigated to ensure test fair-

ness and the validity of the results. The CDM literature has suggested various ap-

proaches for different types of CDMs, including the Wald test for detecting DIF in the

DINA model between a focal and a reference group. In this chapter it is shown by

means of simulations that the frequently applied incorrect computation of the covari-

ance matrix based on an incomplete information matrix causes a Type I error inflation

that was observed in previous simulation studies. Moreover, the Lagrange multiplier

(LM) test is investigated as an alternative testing approach and the performance is

compared to the Wald test. The LM test employed here can be generalized to a more

general framework for testing measurement invariance that (if proven successful) allows

DIF detection with respect to known and unknown subgroups formed by ordered and

unordered categorical as well as continuous variables in different types of CDMs.

Keywords: differential item functioning, DINA model, Wald test, Lagrange multiplier

test, score test, information matrix.
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4.1 Introduction

Differential item functioning (DIF; Holland & Wainer, 1993) is becoming a relevant

research topic in the family of cognitive diagnosis models (CDMs). Over the last

decade, several articles and doctoral theses have been published on this subject. Most

of this work has focused on the parsimonious deterministic input, noisy “and” gate

(DINA; Haertel, 1989; Junker & Sijtsma, 2001) model, which has also been used in

several practical applications to analyze response data from large scale assessments,

such as the Trends in International Mathematics and Science Study (TIMSS) 2007

(e.g., in Lee et al., 2011).

In a recent publication, X. Li and Wang (2015) have summarized previous research

about DIF detection for the DINA model by W. Zhang (2006), F. Li (2008), and Hou

et al. (2014) and highlighted their limitations. Among others issues, it is criticized

that previous research has only focused on DIF assessments between two subgroups,

a reference and a focal group, given by a dichotomous variable (e.g., gender). For

example, the use of the Wald test for DIF detection, as proposed by Hou et al. (2014),

is limited in this regard, since it can only be used to detect DIF between two subgroups

of the individuals. In practice, however, DIF assessments may also be required for more

subgroups given by a nominal variable with more than two categories (e.g., ethnic

groups) or subgroups formed by a continuous variable (e.g., age).

As a solution, X. Li and Wang (2015) proposed an extended version of the log-linear

cognitive diagnosis models (LCDM; Henson et al., 2009) that is modified to incorporate

student covariates. This approach, however, is limited to CDMs that fit into the

LCDM framework. Here, we therefore study the Lagrange multiplier (LM) test as an

alternative approach. It was previously proposed for DIF assessments in traditional

IRT models for known subgroups (Glas, 1998) and later as part of a more general

family of tests for detecting measurement invariance (Merkle et al., 2014; Merkle &

Zeileis, 2013) in psychometric models in general. The framework described by Merkle

and Zeileis (2013) can also be used for detecting DIF when the subgroups are unknown.

This means that, although in this chapter we only consider the case of detecting DIF

for two known subgroups by using the LM test, it is in principle possible to generalize

the approach. As such, it would be possible to detect DIF with respect to unordered

and ordered categorical variables as well as continuous variables (Merkle et al., 2014;

Merkle & Zeileis, 2013) without the need to previously specify a focal and a reference

group. Moreover, the tests can in principle be applied to all types of CDMs and all

general CDM frameworks.

Further, in the simulation study conducted in Hou et al. (2014) the Wald test ex-

hibited inflated Type I error rates. X. Li and Wang (2015) found that this was due

to a substantial underestimation of the standard errors with the marginal maximum

likelihood estimation (MMLE) approach. We argue that it is not just the MMLE, but
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the incorrect computation of the covariance matrix by omitting the parameters of the

latent class distribution (discussed in Chapter 3) when using MMLE that causes the

Type I error inflation in the Wald test.

Another limitation of most previous work is that they did not consider ability differ-

ences between the individuals in their simulation studies. Similar as in traditional IRT

modeling, differences in the ability distribution (that corresponds to the latent class

distribution in CDMs, see below) between the subgroups, also referred to as impact,

can cause Type I error inflation in DIF detection (DeMars, 2010). We believe that a

DIF test is only useful for practical application when it is guaranteed that true ability

differences are not by mistake taken as DIF. For the Wald test impact is not an issue,

since the model (and, thus, also the ability distribution) is estimated separately for the

focal and the reference group (Hou et al., 2014). In DIF detection approaches for which

the model is estimated jointly for all individuals, however, the influence of impact is

currently unclear. Since impact is a realistic scenario in practice, X. Li and Wang

(2015) simulated individuals from three subgroups that differed in their ability and the

same subgroups were used to simulate the DIF conditions. With the LM test, a DIF

detection approach is investigated in this chapter, for which the model is estimated

jointly for all individuals. Therefore, we also consider ability differences between the

subgroups.

This chapter is concerned with the question whether the LM test can be used to detect

DIF in CDMs. We present the results of a preliminary simulation study that compares

the performance (i.e., the Type I error and the power) of the Wald test and the LM test.

For this preliminary study, however, we restrict our investigations to uniform DIF with

respect to a dichotomous variable. To demonstrate our claim that the Type I error

inflation in the Wald test is caused by the incorrect computation of the covariance

matrix, we will further study the performance of the Wald test under test statistics

that are based on three different computations of the covariance matrix (discussed

previously in Chapter 3). Finally, to meet our own expectation that the performance

of a DIF detection approach should be tested under a realistic scenario with ability

differences, we will (similar to X. Li & Wang, 2015) take impact into account in our

simulation study.

The chapter is organized as follows. A brief review of the DINA model, an introduction

into the concept of DIF in the DINA model and the theory of the tests are given

in Section 4.2. The design and the results of the simulation study is presented in

Section 4.3. Section 4.4 concludes with a short discussion.
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4.2 Theoretical background

4.2.1 The DINA model

An intuitive, simple, and parsimonious version of a CDM is the deterministic input,

noisy “and” gate (DINA, Haertel, 1989; Junker & Sijtsma, 2001) model. The DINA

model has been intensively studied by methodological researchers (e.g., DeCarlo, 2011;

de la Torre & Lee, 2010) and can be seen as a special case of general CDMs, such as

the generalized DINA model (de la Torre, 2011) presented in Chapter 3.

For each item j = 1, . . . , J in the assessment, the individuals i = 1, . . . , N are separated

into two latent groups, depending on whether they have mastered all the attributes

required to solve the item or not. This latent group membership is identified from the

unobserved K-dimensional attribute profile αi and the corresponding row from the

Q–matrix (see Chapter 3) using an AND-gate operation and can be computed via

ηij =
K∏
k=1

α
qjk
ik ,

where ηij = 1, if individual i has mastered all attributes required to solve item j, and

0 otherwise. The probability to answer item j correctly is then defined by the item

response function

Pj(αi) = Pr(Xij = 1|αi) = g
1−ηij
j (1− sj)

ηij ,

where gj is called the “guessing” and sj is called the “slip” parameter. Let

δ = (δj, . . . , δJ)
� = ((g1, s1), . . . , (gJ , sJ))

�

denote the p-dimensional vector of item parameters in the DINA model, where p = 2J .

The parameters in the DINA model are often estimated by maximizing the marginal

likelihood as described in de la Torre (2009). With this approach, an additional dis-

tribution is imposed for the attribute profiles. Let π denote the q-dimensional vector

of parameters used to specify this distribution and ϑ = (δ,π)� the complete vector of

all model parameters.

4.2.2 DIF in the DINA model

We consider DIF with respect to two known subgroups, a focal and a reference group,

given by F = {i}vi=1 and R = {i}vi=0, where vi is a dummy coded grouping variable
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(e.g., gender). Hou et al. (2014) defined DIF as follows: “An item exhibits DIF in the

context of CDMs if the probabilities of success on the item are different for individuals

that have the same attribute mastery profile but are from different groups” (p. 101).

In CDMs, the ability is represented by the attribute profile αi, which is – in case of the

DINA model (as described above) – translated into two latent groups for each item.

Please note that the latent groups may or may not correspond to the focal and the

reference group.

Thus, item j exhibits DIF if Pr(Xj = 1|ηj)F �= Pr(Xj = 1|ηj)R. For individuals in the

latent group where not all required skills have been mastered (ηj = 0), this corresponds

to

Δgj = Pr(Xj = 1|ηj = 0)F − Pr(Xj = 1|ηj = 0)R = gFj
− gRj

�= 0

and, for individuals in the latent group where all required skills have been mastered

(ηj = 1), to

Δsj = Pr(Xj = 1|ηj = 1)F − Pr(Xj = 1|ηj = 1)R = sRj
− sFj

�= 0.

According to Hou et al. (2014), and in line with DIF in the traditional IRT framework, a

relevant distinction is between uniform and nonuniform DIF. For a better understand-

ing, the two concepts are exemplary illustrated in Figure 4.1. Under uniform DIF, the

probability of answering an item correctly is higher (top left panel) or lower (bottom

left panel) for individuals in the focal group than for individuals in the reference group

in both latent groups. Thus, an item exhibits uniform DIF when Δgj(= gFj
− gRj

) and

Δsj(= sRj
− sFj

) have equal signs. Under nonuniform DIF, however, the probability

of answering an item correctly is higher (top right panel) for individuals in the focal

group than for individuals in the reference group for nonmasters ηj = 0 and lower for

individuals in the focal group than for individuals in the reference group for masters

ηj = 1, or vise versa (bottom right panel). Thus, an item exhibits nonuniform DIF

when Δgj and Δsj have unequal signs. Of course, Δgj and Δsj may also differ in

magnitude which is (for brevity) not considered in this chapter.

The Wald test

To detect DIF with the Wald method as described in Hou et al. (2014), the DINA

model needs to be estimated separately for the focal and the reference group, yielding

the item parameter estimates δ̂Rj
=
(
ĝRj

, ŝRj

)�
and δ̂Fj

=
(
ĝFj

, ŝFj

)�
for item j with

the corresponding covariance matrices, V̂δRj
= Cov(δ̂Rj

) and V̂δFj
= Cov(δ̂Fj

).
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Figure 4.1: Exemplary illustration of uniform and nonuniform DIF in the DINA model.

Hou et al. (2014) suggested to use the Wald statistic to test the null hypothesis

H0j :

(
Δgj

Δsj

)
=

(
gFj

− gRj

sRj
− sFj

)
= 0, (4.1)

for item j that is given by (see e.g., X. Li & Wang, 2015):

Wj =
(
δ̂Rj

− δ̂Fj

)� (
V̂δRj

+ V̂δFj

)−1 (
δ̂Rj

− δ̂Fj

)
.

Under the null hypothesis, Wj is asymptotically χ2-distributed with 2 degrees of free-

dom.

As discussed in Chapter 3, the covariance matrix can be computed via the inverse of

the information matrix. In the CDM literature and software, however, it is common

to compute the information matrix only for the item parameters (which we call the

incomplete information matrix) or sometimes even separately for each item (which we

call the item-wise information matrix). We have shown that both approaches can lead

to underestimated standard errors, especially for parameters of items that require only

few attributes. Thus, the diagonal elements of the covariance matrix are potentially to

small, which can lead to an overestimation of the test statistic Wj. In the simulation

study presented in Section 4.3 we will therefore present the Type I error and power

rates that would result for detecting DIF with the Wald test, when the test statistic

is based on the covariance matrix computed via the incorrect item-wise or incomplete

versus the correct complete information matrix (for details, see Chapter 3).
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The generalized LM test

The generalized LM test was suggested in several articles for detecting DIF in the IRT

framework (e.g., Merkle et al., 2014; Merkle & Zeileis, 2013; Strobl et al., 2015). Here

we only give a nontechnical description of the general idea of the test. For a detailed

account of the inference procedures involved, we refer to Merkle and Zeileis (2013) and

Merkle et al. (2014). Note that the test can be extended straightforwardly to more

general situations (e.g., more than two subgroups or unknown subgroups formed by

continuous variables) than the one considered here.

We focus on the situation where the DINA model was estimated jointly for all individ-

uals via maximum likelihood estimation or, equivalently, where the parameters were

estimated by solving

N∑
i=1

ψ(ϑ;xi) = 0,

where ψ(ϑ;xi) is the score function (i.e., the partial derivatives of the casewise log-

likelihood contribution with respect to all model parameters):

ψ(ϑ) =
(
ψ(δ), ψ(π)

)�
=

(
∂�(ϑ;xi)

∂δ1
, . . . ,

∂�(ϑ;xi)

∂δp
,
∂�(ϑ;xi)

∂π1
, . . . ,

∂�(ϑ;xi)

∂πq

)�
.

Evaluating the score function for each individual i using the maximum likelihood esti-

mate, reveals the individual deviations from the estimated model over all individuals

for each model parameter. The general idea of the LM test is that under the null

hypothesis of no parameter instability the individual deviations randomly fluctuate

around zero. If, however, an item exhibits DIF with respect to a focal and a reference

group, we would expect systematic deviations from zero within each subgroup for the

score contributions from the parameters of the particular item.

To statistically test for a systematic difference, the individual score contributions are

first rearranged with respect to the ordering of the variable of interest. Thus, in our

case of two subgroups, the scores of the individuals in the reference group are placed

in front of the scores of the individuals in the focal group. Then, the cumulative sum

process of the score contributions, denoted by B(ϑ̂), is computed (see, e.g., Merkle

et al., 2014). The next step is to decorrelate the cumulative sum processes, which

can be done by an estimate of the covariance matrix of the scores. At this point, it

is again important that all model parameters (including the parameters of the latent

class distribution π) are taken into account, although in DIF detection only the item

parameters are of interest. Under the null hypothesis of parameter stability, B(ϑ̂) can

be shown to converge (in distribution) to a k-dimensional Brownian bridge (Hjort &
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Koning, 2002), where k is the number of model parameters. This result can be used

to test the null hypothesis by constructing scalar test statistics and comparing them

to the same statistic applied to the Brownian bridge.

In the categorical case the cumulative scores are additionally aggregated within the

categories, yielding B(ϑ̂)R and B(ϑ̂)F in the situation considered here. A reasonable

statistic for testing both item parameters (i.e., the guessing and the slip parameter) for

DIF between the focal and the reference group is the “unordered” LM statistic (called

LMuo by Merkle & Zeileis, 2013) that is given by the sum of the squared differences

between B(ϑ̂)R and B(ϑ̂)F , for the scores of the parameters of item j:

LMj =

2j∑
l=2j−1

(
B(ϑ̂)R,l −B(ϑ̂)F,l

)2
.

The score function for the parameters of the DINA model can be derived as described

in Chapter 3 and are given for the item parameters by

∂�(ϑ;xi)

∂gj
=

L∑
l=1

Pr(αl|xi) ·
[

xij − Pj(αl)

Pj(αl)(1− Pj(αl))

]
· ∂Pj(αl)

∂gj

∂�(ϑ;xi)

∂sj
=

L∑
l=1

Pr(αl|xi) ·
[

xij − Pj(αl)

Pj(αl)(1− Pj(αl))

]
· ∂Pj(αl)

∂sj
,

and the partial derivatives of the item response function for the DINA are given by

∂Pj(αl)

∂gj
= (1− ηlj) ·

(1− sj
gj

)ηlj
and

∂Pj(αl)

∂sj
= (−ηlj) ·

( gj
1− sj

)1−ηlj
.

The scores of the parameters for the latent class distribution are given by

∂�(ϑ;xi)

∂πl
=

1

πl

(
Pr(αl|xi)− Pr(αL|xi)

)
.

To evaluate the scores, we simply plug-in the estimated parameters ĝj and ŝj and use

Pr(αl|xi) that results as a by-product from the estimation procedure with the EM

algorithm.

4.3 Simulation study

The goal of the simulation study presented in this section is to demonstrate that the

correct estimation of the covariance matrix discussed in Section 3 reduces the Type I
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error inflation previously encountered in simulation studies for the Wald test as a DIF

detection approach in the DINA model and to compare the performance of the Wald

test to that of the LM test.

The simulation study was set up similarly to the previous studies. Response data

was simulated under the DINA model for an assessment with J = 30 items. The

same Q-matrix as in Hou et al. (2014) and X. Li and Wang (2015) was used that

included ten single-attribute items (Kj = 1), ten two-attribute items (Kj = 2), and

ten three-attribute items (Kj = 3) and was constructed such that each attribute was

measured equally often. Three different sample sizes were considered, N = 1000, 2000,

and 4000, and the true guessing and slip parameters were set at gj = sj = 0.1, 0.2,

and 0.3. For this preliminary investigation, only uniform DIF was simulated for two

subgroups of size N
2
such that the response probability was higher for individuals in

the focal group (corresponding to the illustration in the top left panel of Figure 4.1).

Thus, Δgj = Δsj was chosen at 0 (no DIF), 0.05 (small DIF), and 0.1 (large DIF).

For reasons of comparability, all 30 items were simulated as having DIF, as in Hou

et al. (2014). From a practical point of view, it is rather unrealistic that all items is

a test are subject to DIF and would require an essential revision of the assessment.

However, the Wald test should be able to handle this “extreme” situation, since the

model is estimated separately for both subgroups. To make our results comparable

to the previous studies we therefore inherited this design. Please see the comment in

Section 4.3.2 to what extent this affects the performance of the LM test.

To consider impact (ability differences between the focal and the reference group) the

simulation study was replicated twice. In the first run, the attributes were sampled

independently from a Bernoulli distribution with probability Pr(αk = 1) = 0.5 for all

individuals. This results in a latent class distribution with equal probability for each

attribute pattern. In the second run, the individuals in the focal and the reference

group were sampled from different ability distributions by setting the probability that

attribute k had been mastered to Pr(αk = 1) = 0.6 for individuals in the focal group

and to Pr(αk = 1) = 0.4 for individuals in the reference group. This corresponds to a

fairly large ability difference and should be considered as a “severe test” for the DIF

detection approaches.

The DINA model was estimated using the EM algorithm as described in de la Torre

(2009) and each condition was replicated 1000 times. The estimation routine and the

Wald test were implemented in the free R system for statistical computing (R Core

Team, 2016). The code is available online (https://github.com/mphili/cdm) in the

form of an R package called Rcdm for other users. The R package strucchange

(Zeileis, Leisch, Hornik, & Kleiber, 2002) was additionally used to perform the LM

tests.
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4.3.1 Type I error study

We first summarize the results from the 18 conditions without DIF. Table 4.1 lists

the rejection rates for the three different Wald tests and the LM test when the null

hypothesis (no DIF) was true, tested on a significance level of α = 0.05. The rejec-

tion rates were additionally aggregated over items that required the same number of

attributes. For the significance level of 0.05 and 10× 1000 trials, we would expect the

rejection rate within the interval [0.046, 0.054] by assuming an exact binomial distri-

bution. Rates within this interval are illustrated in italic letters and rates below the

upper margin of this interval are illustrated in bold letters to better distinguish inflated

from deflated Type I error rates.

First of all, the simulation replicated the inflation of the Wald test encountered in

previous studies for the Wald tests with test statistics based on the incomplete and

the item-wise information matrix. The inflation was bigger for larger true parameter

values (gj = sj = 0.2 and 0.3) and did not vanish (although slightly decline) with

increasing sample size. The Type I error of the Wald test in which the test statistic was

based on the complete information matrix, however, was mostly conservative for the

smallest sample size, but converged towards the nominal rate with increasing sample

size. This suggests that the poor convergence properties of the model discussed earlier

in Chapter 3 causes deviations from the nominal rate for smaller sample sizes.

For the conditions with impact, the Wald test with the test statistic based on the

complete information matrix also showed inflated Type I error rates for the smaller

samples sizes (N = 1000 and N = 2000) and large parameter values (gj = sj =

0.3). This inflation, however, vanished for the largest samples size (N = 4000). For

the incomplete and the item-wise approach, however, the inflation was much higher.

Thus, large heterogeneity in the data can have a particularly negative influence on the

performance of the Wald test for DIF detection when the incorrect computation of the

covariance matrix is used as our simulation study demonstrated.

The Type I error of the LM test was very well-controlled and almost always located

within the expected interval over all conditions considered without impact. When

impact was present, however, the Type I error rates were either deflated or inflated.

Inflated rates were found for large true parameter values gj = sj = 0.3 and even

increased with larger sample size. This is presumably due to the fact that the model

is estimated jointly for all individuals to compute the score contributions for the LM

test (see the comment in Section 4.4 on this matter).

4.3.2 Power study

For a better readability, the power rates are illustrated graphically (instead of tabularly)

in Figure 4.2 that reads as follows. The rows separate the conditions with varying true
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N = 1000 N = 2000 N = 4000
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Figure 4.2: Power rates for detecting uniform DIF using the Wald test (where the test statistic is based
on the complete, the incomplete, or the item-wise information matrix) and the LM test (α = 0.05).

parameter values (first vs. second and third vs. fourth and fifth row) and DIF size (first,

second and fourth vs. third and fifth row). The power rates are illustrated in the y-

direction of the graph, separately for items that required the same number of attributes

(in the x-direction). The impact and no impact conditions are separated using solid

and dashed lines, respectively, and the four investigated tests are distinguished using

different colors and symbols.

As one would expect, the power rates increased with the sample size (from left to

right column) and with larger DIF (compare second vs. third and fourth vs. fifth

rows). With increasing true parameter values the power rates decreased (compare,
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e.g., first vs. third vs. fifth row), because larger parameter values indicate lower

discrimination between the two latent groups. The Wald test showed power rates above

0.8 (usually considered sufficient in practice) in several conditions, especially for the

largest sample size, large DIF, or for small true parameter values. Deviations (beyond

sampling variability) resulted between the simulations with and without impact. Since

the direction of the deviation depended on several factors (number of attributes, DIF

amount and true parameter values), it is not further interpreted here, but may be

interesting to investigate in future research.

Note that the power rates of the Wald test with the test statistics based on the in-

complete or item-wise computation of the information matrix were always higher than

when the test statistic was based on the complete computation of the information ma-

trix. The underestimation of the standard errors in CDMs discussed in Chapter 3 and

the results of the Type I error study presented in the last section suggest that, when

the test statistic is based on an incomplete computation of the information matrix,

the test statistic is overestimated and, thus, the power rates are inflated. This means

that the Wald test with the test statistic based on the incorrect computation of the

covariance matrix is generally too liberal.

The LM test, on the other hand, had the lowest power rates in all condition considered.

This is most likely caused by the very strong violation of the model assumption by

adding DIF to all items for this simulation study (see the comment in Section 4.4 on

this matter). Similar as in the Type I error study, the power rates were inflated for the

condition with large true parameter values (gj = sj = 0.3), when impact was present.

For the rest of the conditions, the power rates were slightly lower under impact, but

the deviation vanished with increasing sample size.

4.4 Discussion

The simulation study presented in this chapter demonstrated that the previously en-

countered Type I error inflation in the Wald test for DIF detection in the DINA model

(see, e.g. Hou et al., 2014; X. Li & Wang, 2015) was due to an overestimation of the

test statistic caused by an incorrect computation of the covariance matrix (based on

an incomplete information matrix, see Chapter 3) when the models are estimated via

MMLE. When the covariance matrix was correctly computed via the complete infor-

mation matrix, however, the Wald test showed well-controlled Type I error rates. At

the same time, the power rates were lower in some of the investigated conditions than

those that had been reported in previous studies, which was due to the same reason

and suggests that the test was generally too liberal when the covariance matrix used

to compute the test statistic was based on an incomplete information matrix.
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but also lower power rates compared to the Wald test. This was presumably caused by

the fact that DIF was present in every item, which is in fact a strong violation of the

models assumption that the parameters of all items are constant across all individuals.

Different than for the Wald test, the items are estimated jointly for all individuals,

such that the violations can, for example, affect the ability estimates of individuals in

both subgroups. To check our claim, we repeated the simulation study with only 20%

DIF items (namely the items 1, 2, 11, 12, 21, and 22). The results (not shown for

brevity) supported our assertion in the sense that the power rates of the LM test were

comparable and sometimes even higher to the one from the Wald test with the test

statistic based on the complete information matrix.

In this additional study, we also checked the Type I error rates for the non-DIF items

in the conditions where the DIF items were subject to DIF and noted a small inflation

of the Type I error in the LM test for single-attribute items in the conditions with large

DIF and true parameter values gj, sj ≥ 0.2. The Type I error of the Wald test with

the test statistic based on the correct computation of the covariance matrix, however,

was not affected. This indicates a principle problem that can occur through the joint

estimation of all individuals applied for the LM test in which the presence of DIF in

some items may deteriorate the score contributions for the non-DIF items. To devote

the LM test as real alternative to the Wald test as an item-wise DIF detection approach,

this issue needs to be further investigated in future research. The LM test, however,

could also be employed as a global DIF detection approach by testing all items jointly

for DIF. Therefore, the test statistic is simply computed over the scores of all item

parameters. In this case, the situation described above is no longer problematic.

Similar to X. Li and Wang (2015), this study investigated impact (ability differences)

with respect to two subgroups. For the Wald test with the test statistic based on the

correct computation of the covariance matrix, some conditions had slightly increased

Type I error rates that vanished with increasing samples size. The impact, on the other

hand, did affect the Type I error rates of the LM test. They were either deflated for

small true parameter values or inflated for large true parameter values. These effects

did not vanish with increasing sample size.

In CDMs, the ability distribution is freely estimated from the data. Moreover, it is

easy to show by rearranging terms that separate ability distributions for subgroups are

combined in a mixed ability distribution that holds for all individuals. Therefore, we

would not expect problems with the LM test under impact. However, the results of

the simulation study contradict our expectations and indicate that violations of mea-

surement invariance in the parameters of the latent class distribution can deteriorate

the score contributions for the item parameters. Previously, de la Torre and Lee (2010)

encountered bias in the item parameter estimates for individuals formed by subgroups

with different ability distributions, when the model was estimated jointly for all in-

In the conditions without impact, the LM test showed well-controlled Type I error rates,
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procedure, rather than in the LM test.

There is a need for future research to investigate these issues. If thereby the LM test

proves successful and existing problems can be solved, however, it has a great potential

to be used as a general and flexible DIF detection approach for many different types

of CDMs and general CDM families.

dividuals. Thus, it is possible that the origin of this problem is in the estimation
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Conclusion and outlook

The aim of this work was to highlight the importance of stability to draw reliable

conclusions from the results of statistical data analysis. Graphical, computational, and

statistical methods were provided and/or evaluated, that can be used to investigate

the stability of results generated by parametric and nonparametric methods applied in

practice and research. This chapter summarizes important findings and limitations of

the contributions and suggests ideas for future research.

Approaches to assess the stability of results generated by nonparametric, adaptive, and

flexible methods were addressed in Chapters 1 and 2. The first contribution presented in

Chapter 1 is a toolkit of descriptive measures and graphical illustrations to investigate

the stability of results generated by tree-based methods. It was found that the stability

of trees should be evaluated by analyzing the variable and cutpoint selection. The

stability assessment was illustrated by applying the tools to a real data set. The

second contribution presented in Chapter 2 is a framework to measure the stability of

results from supervised statistical learning in general. In the framework, the stability

is assessed by pairwise comparison of results generated on resampled learning samples.

It was illustrated by means of simulations that the stability of results depends on the

algorithm, the DGP, and – most importantly – how well the algorithm can approximate

the true functional form between the predictors and the conditional distribution of the

response in the DGP. The stability assessment also depends on framework specific

factors, such as the selected resampling method.

The approaches presented in Chapters 1 and 2 are based on the key theoretical argu-

ment that the equivalence of the substantive meaning of two results can be assessed by

the comparison of their predictions; as is was previously suggested by Turney (1995).

The substantive meaning is what researchers interpret to draw scientific conclusions.

From the decision tree generated for the Titanic data set in Chapter 1, for example, one

can conclude that women who traveled first class (a subgroup formed by the predictors)

had a high chance to survive the sinking of the RMS Titanic (the predicted response

for the subgroup). Consequently, when the goal is to assess the stability with respect

to the interpretation of a result it is possible to study the stability of its prediction.

Moreover, it was found that the interpretation of two results from statistical learning

can be identical although their structure differs (e.g., the order of the splits in a tree).
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This rational is very relevant for practitioners who use their results for interpretation

and means that – by inversion of the argument – just because two results (e.g., trees)

look very different at first sight, this does not automatically imply that they also lead to

fundamentally different interpretations. Although deviations in their interpretations

are very likely (e.g., due to randomness in the data), they still might be relatively

similar.

This further implies that, besides the prediction itself, only the structural elements that

are required to generate the prediction should be used to assess stability. These are,

for example, the selected variables and cutpoins in a tree or the estimated coefficients

in a parametric model. Thus, for various algorithms, more detailed measures can be

developed that may provide an in-depth assessment of the stability of their results,

such as the tools presented for tree-based methods in Chapter 1. However, only the

framework presented in Chapter 2 can be used for a fair comparison of the stability

between results generated by different algorithms.

Taking these findings into account, future research should put effort in developing

sophisticated descriptive measures and graphical tools for assessing the stability of

results from tree-based methods or other statistical learning algorithms. Similar to

Wager et al. (2014) it may, for example, be possible to develop a theory based on

the resampling method that allows the computation of a lower bound for acceptable

variable selection proportions or confidence intervals for selected cutpoints in tree-based

methods.

Effort should also be aimed at investigating the stability of results generated by algo-

rithms that are used in practice and research for statistical data analysis; especially

when the aim is to draw conclusions about the underlying data-generating process. A

starting point could be a comprehensive study in which different algorithms applied

to well-known benchmarking problems for regression or classification, such as those

from the UC Irvine Machine Learning repository Lichman (2013) are compared. When

applying methods for statistical learning in practice, people should choose the algo-

rithm (and its hyperparameters) not only with respect to prediction accuracy, but also

with respect to the stability of the generated results when conducting explanatory data

analysis.

Recursive partitioning was used throughout Chapters 1 and 2 to motivate stability

assessments, because this method is widely used for explanatory modeling and because

it is well-known that the methods can generate unstable results. Moreover, Breiman

(1996b) identified other methods as unstable, including multivariate additive regression

splines (MARS) and neural networks.

Although the majority of applications in business, industry, and science are of predictive

nature, there is often an ex post interest in understanding the relation between the

observed variables. Therefore, more and more methods are available to peek into those
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black boxes generated by powerful, yet purely predictive approaches, such as random

forests or deep learning algorithms. Thus, whenever the focus shifts from prediction

towards generating an understanding about the relation between the observed variables,

stability is again important. Irrespective whether the used algorithm is known to be

stable or not, the framework is generally useful to investigate the stability of a result,

since the stability always also depends on the characteristics of the DGP and on the

match between the algorithm and the DGP.

Stability assessments can also guide the choice of users between ensemble methods and

single results. If in an explanatory data analysis, where explanation is typically more

important than prediction, the stability of a single result is sufficiently high, there is no

need for generating a less interpretable result through bagging or boosting. Thus, the

methods presented in this thesis can, for example, help users to make a stability-based

choice between a single tree and a random forest.

To address some problems or limitations with the methods and studies presented in

Chapters 1 and 2, it should be mentioned that, as opposed to glm, it was not possible

to identify a resampling and evaluation method for ctree that recovered the reference

stability well for all investigated DGPs. This highlights that the quality of the stability

assessment depends on the algorithm and perhaps additionally on its tuning parame-

ters. Thus, comparisons of stability between different algorithms may be conflated and

therefore this issue should be investigated in future research.

In practical applications, the stability in a specific region could be more relevant than

in others. Such as in medical applications where a specific group of patients (e.g.,

pregnant women or children) might be more vulnerable to wrong treatments than

other groups. If a user wants to limit the stability assessment to a particular region of

the predictor space, reweighting the observations in the evaluation sample is the right

approach. However, we only discussed nonnegative case-weights in Chapter 2, although

proportionality weights could be more suitable for practical applications (similar to

misclassification costs in predictive modeling). But whether proportionality weights

can be used or not depends on the similarity measure and future research should

examine how this could be implemented in a general way for any similarity measure.

The framework presented in Chapter 2 can be used to investigate the global stability of

a result over the complete predictor space in terms of a single similarity distribution.

However, results from statistical learning are – almost certainly – more stable in some

regions of the predictor space than in others. A possible way to address this limitation

is by investigating the local stability of a result. This could be done by specifying

a grid of points over the complete predictor space and then illustrate the stability

measure at these points. For two predictor variables, the resulting similarity values

could be illustrated by contour plots. With this approach one would generate a local

stability map over the predictor space as opposed to a single similarity distribution

that represents the complete preditor space, as it is done in our framework.
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Future research should examine ways to compute the local stability efficiently and how

it could be meaningfully reported and illustrated when the number of predictors is

larger than two. The idea of individual conditional expectation presented in Goldstein

et al. (2015) could be used as a starting point.

Approaches to assess the stability of results generated with parametric models were

addressed exemplary for cognitive diagnosis models (CDMs) in Chapters 3 and 4. These

models are becoming popular in the field of educational and psychological measurement

to assess the mastery or non-mastery of a set of fine-grained attributes (e.g., particular

mathematical skills).

The third contribution presented in Chapter 3 is a discussion on the estimation of the

standard errors in CDMs. Standard errors are important to assess the reliability of pa-

rameter estimates in a parametric model. Thus, they should be accurate and correctly

computed. A common way to compute the standard errors in models estimated by

the maximum likelihood (ML) approach, is based on the inversion of the information

matrix. In Chapter 3 it is found by theoretical considerations and illustrated by means

of simulations that an incomplete computation of the information matrix can lead to

an underestimation of the standard errors for the specific parameters of interest, when

the model parameters are not independent. Although, this finding is valid for para-

metric models in general, it is of specific relevance in CDMs for reasons discussed in

Chapter 3.

The fourth contribution presented in Chapter 4 is a discussion of two statistical tests

for parameter instability in CDMs. An important assumption to guarantee fair com-

parisons between subgroups is that the item parameters are invariant. In the field of

educational and psychological measurement, it is therefore important to investigate

the instability of the item parameters, called differential item functioning (DIF), with

respect to subgroups formed by the covariates of the respondents. Among other ap-

proaches, the Wald test has been proposed to detect DIF in CDMs that, however,

suffered from Type I error inflation for items with low discrimination as shown in pre-

vious simulation studies. In Chapter 4 it was demonstrated by means of simulations

that the Type I error inflation is caused by the incorrect computation of the covariance

matrix discussed in Chapter 3. With the correct computation of the covariance matrix,

the Wald test had well-controlled Type I error and acceptable power rates. Note that

in Chapter 4, only uniform DIF was investigated.

Further, the LM test was investigated that could in principle be extended to detect DIF

between known or unknown subgroups formed by categorical and numerical variables.

Although the LM test performed equally well as the Wald test in most investigated

conditions, it suffered from Type I error inflation under impact (ability differences

between the subgroups tested for DIF). Future research should examine the LM test

more closely in this situation and come up with solutions to deal with the impact
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Table 4.2: Decision tables for classical DIF testing and equivalence testing.

Classical DIF testing Equivalence testing

H0 : gjR = gjF , HA : gjR �= gjF H0 : gjR �= gjF , HA : gjR = gjF

Test H0 true (no DIF) H0 false (DIF) H0 true (DIF) H0 false (no DIF)

rejects

H0

Incorrect decision:

Replace item that

has no DIF

Correct decision:

Replace item that

has DIF

Incorrect decision:

Keep item that has

DIF

Correct decision:

Keep item that has

no DIF

Type I error = α Power = 1− β Type I error = α Power = 1− β

fails to

reject

H0

Correct decision:

Keep item that has

no DIF

Incorrect decision:

Keep item that has

DIF

Correct decision:

Replace item that

has DIF

Incorrect decision:

Replace item that

has no DIF

Specifity = 1− α Type II error = β Specifity = 1− α Type II error = β

problem, since the approach could provide a powerful alternative to the Wald test for

DIF detection in various testing situations.

An issue that arises with the tests for DIF detection discussed in this Chapter 4, is

that the burden of proof rests on the presence of DIF and not on the actual research

hypothesis that the studied item does not have DIF. This issue was previously men-

tioned in the DIF literature (Kopf, 2013) and is exemplified by means of decision tables

in Table 4.2.

By defining the equivalence of the item parameters as the null hypothesis, as it is done

in classical DIF testing (see left part of Table 4.2), the actual “worst case” scenario of

keeping an item that has DIF is no longer controlled by the α-level of the test. Instead,

it is given by the Type II error (β) of incorrectly not rejecting the null hypothesis

although it is false that depends on the power of the test (1 − β). Thus, when the

power of the test is low (e.g., due to a small sample size, large variance in the response

probabilities, or small DIF) the Type II error is large and the “worst case” scenario is

more likely to occur. This can be a serious problem for the tests discussed in Chapter 4,

since the power was not always high enough to rule out this issue.

The so-called equivalence tests (Walker & Nowacki, 2011) could provide a solution to

this problem (see right part of Table 4.2). The nonequivalence of the item parameters

(i.e., the item has DIF) is defined as the null hypothesis by specifying a minimum

discrepancy in the parameter values between the focal and the reference group. As

such, the actual research hypothesis (no DIF) becomes the alternative, as it is common

in null hypothesis testing, and the “worst case” scenario of keeping an item although

it has DIF is controlled by the α-level of the test. It is left for future research to

investigate this idea for the tests used for DIF detection in CDMs.
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nonequivalence (see left part of Table 4.2) may be appropriate for testing companies

due to the costs of generating test items. To avoid errorneously excluding an expensive

item, it is of advantage when the incorrect decision of replacing an item that has no

DIF is stricly controlled by the α-level.

Finally, a general limitation of CDMs is the poor asymptotic convergence of the pa-

rameter estimates to the normal distribution for complex models, even for relatively

large data sets. This is caused by the large number of parameters estimated in a sat-

urated model, such as the G-DINA model. Reduced models (e.g., DINA, DINO, or

A-CDM) that require fewer parameters, can be estimated separately for each item in

the G-DINA model framework. To identify the appropriate reduced model for each

item, de la Torre and Lee (2013) proposed the Wald test that makes a comparison

of the item level fit between the reduced and the saturated model. The number of

comparisons depends on the number of items and the number of reduced models of

interest. A drawback of this approach is that the quality of the Wald test depends on

the asymptotic convergence of the model parameters and its covariance matrix.

Another approach could be to find the best rule for each item via step-wise model

selection. For items that require two or more items one could sequentially select the

rule that leads to the model fit with the lowest AIC or BIC value, while all other

items keep the rule from the initial model, for example, the saturated G-DINA model.

This approach is already implemented in the Rcdm package for research purposes. It

should, however, not be used for practical applications before its quality is investigated

in future research – but first results looked promising.

Yet a different approach to obtain reduced models – that could be investigated in future

research – is to use regularization methods to shrink dispensable parameters (or groups

of parameters) to zero while estimating the saturated G-DINA model. Compared to

the approach based on the Wald test, there would not be need for additional hypothesis

testing after the saturated model was estimated.

Which approach to use, however, is also a matter of perspective. The classical tests for
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Appendix A

Supplementary material: Chapter 2

A.1 Similarity measures

• Table A.1 lists similarity measures for the regression case.

• Table A.2 lists similarity and distance measures for the classification case.

A.2 Simulation experiments

• Figure A.1 and Figure A.2 illustrate the complete results from Study 1 presented

and discussed in Section 2.4.2.

• Figures A.3-A.8 illustrate the complete results from Study 2 presented and dis-

cussed in Section 2.4.3.
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(ŷ ′,ŷ ′′;p

)
=

P
(|ŷ ′−
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(ŷ ′,ŷ ′′;σ

)
=

ex
p (−

d
E
D
(ŷ ′,ŷ ′′)

2

2
σ
2

)
[0,1

]
n
o

r
b
f
k
e
r
n
e
l
(
)

T
an

im
o
to

co
effi

cien
t

s
T
C
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1 (ŷ ′′i

)
2

[−
1
,1
]

n
o

c
o
s
i
n
e
(
)

C
o
n
co
rd
a
n
ce

co
rrela

tio
n
co
effi

cien
t

s
C
C
C
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ŷ
′′ )

=
1 m

m ∑ i=
1

ŷ
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Figure A.1: Reference stability (results of Study 1) for DGPs with low dimension (p = 20).
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Figure A.2: Reference stability (results of Study 1) for DGPs with high dimension (p = 40).
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Figure A.3: Results of Study 2 for DGPs with low dimension (p = 20) and equally balanced classes.
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Figure A.4: Results of Study 2 for DGPs with high dimension (p = 40) and equally balanced classes.
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Figure A.5: Results of Study 2 for DGPs with low dimension (p = 20) and weakly unbalanced classes.
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Figure A.6: Results of Study 2 for DGPs with high dimension (p = 40) and weakly unbalanced classes.
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Figure A.7: Results of Study 2 for DGPs with low dimension (p = 20) and highly unbalanced classes.
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Figure A.8: Results of Study 2 for DGPs with high dimension (p = 40) and highly unbalanced classes.
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Appendix B

Supplementary material: Chapter 3

B.1 Blockwise matrix inversion

The following statements about blockwise matrix inversion of a symmetric matrix can

be used to establish the inequality between standard errors based on the complete

and the incomplete information matrix discussed in Section 3.2.1. The corresponding

theorems (and proofs) can be found in Chapter 13 of S. Banerjee and Roy (2014), if

not stated otherwise.

Let A be a positive definite (p.d.) symmetric matrix, i.e. the inverse A−1 exists and

is also p.d.. Suppose A is partitioned as

A =

(
A11 A12

A�
12 A22

)
,

where A11 is p× p, A12 is p× q and A22 is q × q. Then its principal submatrices A11

and A22 are also invertible and p.d.. Let B = A−1 be partitioned (similar to A) as

B =

(
B11 B12

B�
12 B22

)
,

where B11 =
(
A11 −A12A

−1
22 A

�
12

)−1
and B22 =

(
A22 −A�

12A
−1
11 A12

)−1
are given by

the inverse of the Schur complements of A22 and A11, respectively, which are also p.d..
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82), (
A11 −A12A

−1
22 A

�
12

)−1
= A−1

11 +A−1
11 A12

(
A22 −A�

12A
−1
11 A12

)−1
A�

12A
−1
11

B11 = A−1
11 +A−1

11 A12B22A
�
12A

−1
11

B11 = A−1
11 +C�B22C.

where C = A�
12A

−1
11 = (A−1

11 A12)
�. For the diagonal elements, we have

diag(B11) = diag(A−1
11 ) + diag(C�B22C),

where B11 and A−1
11 are both positive definite, i.e., their diagonal elements are positive.

Lemma 1. If B22 and A−1
11 are positive definite and A12 �= 0, then each diagonal

element of C�B22C is positive.

Proof. Since B22 is positive definite, x
�B22x > 0 whenever x �= 0. Choosing x = Cei

reveals that

x�B22x = e�
i C

�B22Cei > 0,

where ei is the ith unit vector that is used to extract the ith diagonal element from

C�B22C. Hence, the diagonal elements in C�B22C are also positive.

So, if A12 �= 0, all diagonal elements in C�B22C are positive and therefore,

diag(B11)r > diag(A−1
11 )r ∀ r ∈ {1, . . . , p}.

To obtain the inequality of the standard errors as stated in Section 3.2.1, use A = Iϑ

and B = Vϑ and let Iβ,π �= 0.

Please note that the symmetric information matrix Iϑ is only positive semidefinite. A

positive semidefinite symmetric matrix is, however, positive definite if and only if it is

nonsingular (see e.g., Harville, 2008, Corollary 14.3.12). Thus, the inequality holds if

Iϑ is invertible, which is required anyway to compute the standard errors.

By the Sherman-Woodbury-Morrison formula (see e.g., S. Banerjee & Roy, 2014, p.
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Appendix C

R codes

The appendix demonstrates the usage of the R packages stablelearner and Rcdm.

For brevity, the output of some commands is suppressed or truncated.

C.1 R package stablelearner

Functions to perform stability assessments presented in Chapters 1 and 2 are provided

in the form of an add-on package for the free open source software R for statistical

computing. The package is called stablelearner and is available online under the

terms of the GNU General Public License 2 on https://R-Forge.R-project.org/

projects/stablelearner/.

C.1.1 Installation

The package can be directly installed from R-Forge (Theußl & Zeileis, 2009) via

> install.packages("stablelearner", repos = "http://R-Forge.R-project.org")

Additional packages (Hornik, Buchta, & Zeileis, 2009; Hothorn & Zeileis, 2015; Kuhn,
Weston, Coulter, & Culp, 2015; Meyer, Dimitriadou, Hornik, Weingessel, & Leisch,
2015; Ripley, 2016) that are only required to run the R commands presented below can
be installed via

> install.packages(c("RWeka", "partykit", "C50", "e1071", "tree"))

The package RWeka is an interface to Weka (Frank, Hall, & Witten, 2016) that is

written in (and requires) Java. For more information see http://www.cs.waikato.ac

.nz/ml/weka/.
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C.1.2 Stability of tree-based methods

The package must be loaded for the current R session:

> library("stablelearner")

The data used throughout this example can be retrieved directly from the package:

> data("titanic", package = "stablelearner")

> titanic_passenger <- subset(titanic, class %in% c("1st", "2nd", "3rd"))

The example illustrated here, demonstrates how to assess the stability of a result from
recursive partitioning using ctree() from the partykit package that can be generated:

> res <- ctree(survived ~ gender + age + fare + ordered(class) + embarked +

+ sibsp + parch, data = titanic_passenger)

Now, the model object can be passed to the function stabletree() to assess its sta-
bility:

> stab <- stabletree(res)

A summary of the stability assessment can be shown by:

> summary(stab)

Call:

ctree(formula = survived ~ gender + age + fare + ordered(class) +

embarked + sibsp + parch, data = titanic_passenger)

Sampler:

B = 500

Method = Bootstrap sampling

Variable selection overview:

freq * mean *

gender 1.000 1 1.000 1

ordered(class) 1.000 1 2.608 2

age 0.994 1 2.356 2

fare 0.790 1 0.956 1
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sibsp 0.778 1 1.046 1

embarked 0.438 0 0.502 0

parch 0.240 0 0.274 0

(* = original tree)

In order to speed up the stability assessment process, parallelization may be activated
via parallel for supported platforms:

> stabletree(res, cores = 4)

Visualizing tree stability assessments

The variable selection proportion can be illustrated via:

> barplot(stab)

Labels and variable ordering can be changed (for details, see ?barplot.stabletree).

The variable selections of replications can be illustrated via:

> image(stab)

Labels and variable ordering can be changed (for details, see ?image.stabletree).

The graphical cutpoint analysis can be illustrated via:

> plot(stab)

Several options are available to change the appearance of the plot (for details, see

?plot.stabletree).

Sampler functions

The default sampler is bootstrap. A different sampler can be selected via:

> stabletree(res, sampler = subsampling(v = 0.8))

> stabletree(res, sampler = samplesplitting(k = 10))

> stabletree(res, sampler = jackknife(d = 1))
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C.1.3 Stability of results from supervised statistical learning

To demonstrate the implementation of the stability measuring framework, we continue
with a smaller example based on the well-known iris data set (for details, see ?iris)
that is a classification problem with three classes and four numeric predictors. We use
recursive partitioning, but other methods can be applied as well.

> r1 <- ctree(Species ~ ., data = iris)

The stability of the results can be assessed by:

> stab <- stability(r1)

A summary of the sampling and the estimated similarity values can be shown by:

> summary(stab)

Call:

ctree(formula = Species ~ ., data = iris)

Sampler:

B = 500

Resampling method = Bootstrap sampling

Evaluation method = OOB

Sampling summary:

avg min max

Learning sample size 150.000 150 150

Learning overlap 60.204 43 72

Evaluation sample size 20.314 10 33

Evaluation overlap 0.000 0 0

Similarity summary:

, , Total variation distance (reversed)

5% 25% 50% 75% 95%

party 0.871 0.923 0.952 0.980 0.995

The default similarity measure for classification problems is the total variation distance
(TVD). The values are reversed by default (such that higher values indicate higher
stability). This can be suppressed by:
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> summary(stab, reverse = FALSE)

The number of repetitions and the similarity measure can be changed to one or more
other similarity measures using stab control() and the control argument:

> stability(r1, control = stab_control(B = 250, measure = list(bdist, ...)))

A list of implemented similarity measures can be found via ?similarity measures.

Comparing algorithms

The package can be used to compare the stability of results generated by different algo-

rithms that are implemented in R. Here, we compare different algorithms for recursive

partitioning.

Therefore, the packages that provide the functions for the different algorithms must be
loaded to the current R session:

> library("rpart")

> library("C50")

> library("RWeka")

> library("tree")

Then, for each algorithm a result must be generated for the same model and data set:

> r2 <- rpart(Species ~ ., data = iris)

> r3 <- tree(Species ~ ., data = iris)

> r4 <- J48(Species ~ ., data = iris)

> r5 <- C5.0(Species ~ ., data = iris)

The stability can be assessed by passing all objects to the stability() function. For
comparability, a seed may be set via the control argument to assess the stability of
each result using the same resamplings. Labels may be passed via the argument names
for a better recognition of the results in the summary output:

> stab <- stability(r1, r2, r3, r4, r5, control = stab_control(seed = 1234))

> summary(stab, names = c("ctree", "rpart", "tree", "J48", "C5.0"))

Call:

ctree(formula = Species ~ ., data = iris)

rpart(formula = Species ~ ., data = iris)

tree(formula = Species ~ ., data = iris)
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J48(formula = Species ~ ., data = iris)

C5.0.formula(formula = Species ~ ., data = iris)

Sampler:

B = 500

Resampling method = Bootstrap sampling

Evaluation method = OOB

Sampling summary:

avg min max

Learning sample size 150.000 150 150

Learning overlap 60.108 43 73

Evaluation sample size 20.348 10 32

Evaluation overlap 0.000 0 0

Similarity summary:

, , Total variation distance (reversed)

5% 25% 50% 75% 95%

ctree 0.871 0.930 0.956 0.978 0.994

rpart 0.849 0.902 0.941 0.976 0.992

tree 0.880 0.935 0.960 0.980 1.000

J48 0.878 0.932 0.955 0.988 1.000

C5.0 0.857 0.916 0.947 0.982 0.993

Illustrate similarity distributions

The similarity distribution may be illustrated graphically. A simple plot can be gener-
ated with the generic standard R plotting function:

> boxplot(stab, main = "Compare the Stability of some Tree-based Learners")

More fancy plots may be generated manually. For example by using ggplot2 (Wick-
ham, 2009):

> library("ggplot2")

> sval <- similarity_values(stab)

> pdat <- as.data.frame.table(sval) # or use melt from package reshape

> colnames(pdat) <- c("Repetition", "Learner", "Measure", "Value")

> ggplot(pdat, aes(x = Learner, y = Value)) +
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+ geom_violin(aes(fill = Learner)) +

+ geom_boxplot(width = 0.1) +

+ facet_wrap(~ Measure) + # in case more than one measure is investigated

+ ylab("Stability") + theme_bw() +

+ ggtitle("Compare the Stability of some Tree-based Learners")

Resampling and evaluation methods

The default combination of sampling and evaluation method is bootstrap sampling

with out-of-bag evaluation. The methods can be changed by the control argument.

For bootstrap sampling with in-sample or out-of-sample evaluation:

> stability(r1, control = stab_control(evaluate = "ALL"))

> stability(r1, control = stab_control(evaluate = "OOS"))

For subsampling with out-of-bag, in-sample or out-of-sample evaluation:

> stability(r1, control = stab_control(sampler = subsampling))

> stability(r1, control = stab_control(sampler = subsampling, evaluate = "ALL"))

> stability(r1, control = stab_control(sampler = subsampling, evaluate = "OOS"))

For splithalf sampling with in-sample or out-of-sample evaluation:

> stability(r1, control = stab_control(sampler = splithalf, evaluate = "ALL"))

> stability(r1, control = stab_control(sampler = splithalf, evaluate = "OOS"))

More details on the available resampling and evaluation methods and all other options

can be found via ?stab control.

Define algorithms

The number of algorithms for supervised statistical learning provided in R via add-on

packages is too big to be supported by the package. Thus, only very few algorithms

are implemented for presentation purposes (see ?LearnerList). The idea is that the

algorithms of interest are defined by the user. An example how this can be done is

given below.

Suppose we want to investigate the stability of a result generated by the support

vector machine algorithm implemented in the package e1071 that is not predefined in

the package stablelearner.

The first step is to load the package and generate a result by:
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> library("e1071")

> res <- svm(Species ~ ., data = iris, probability = TRUE, gamma = 0.5, cost = 4)

The algorithm can be added to LearnerList for the current R session by:

> newlearner <- list(

+ class = "svm",

+ package = "e1071",

+ method = "Support Vector Machine",

+ predfun = function(x, newdata, yclass = NULL) {

+ if(match(yclass, c("ordered", "factor"))) {

+ attr(predict(x, newdata = newdata, probability = TRUE), "probabilities")

+ } else {

+ predict(x, newdata = newdata)

+ }

+ })

> addLearner(newlearner)

The class of the fitted model object can be extracted using class(). In many cases, the

generic method predict() is defined for the class, but the arguments tend to differ be-

tween implementations. For more information, the documentation of the corresponding

package should be considered.

After all, stability can be assessed as before using stability(). Note that stable-

learner currently only supports algorithms that use the standard R formula interface

and the function call must be stored as part of the object generated by the algorithm,

since the refitting is done via update() (see ?update for details).

Using reweighting

Case-weighting can be activated by:

> stability(r1, weights = TRUE)

for algorithms that support these. The weights are computed according to the selected

sampling and evaluation method.

User-defined case-weights can be submitted via the weights argument. A 3-dimensional

array of size n*B*3must be submitted, where the first two matrices contain the learning

weights and the third matrix contains the evaluation weights.

For example, to randomly select observations (without replacement) in the resampling
and evaluation process one can use:
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> n <- 150

> B <- 500

> w <- array(sample(c(0, 1), size = n*B*3, replace = TRUE), dim = c(n, B, 3))

> stability(r1, weights = w)

Weights can also be used to restrict the stability assessment to a particular region of
the predictor space by:

> w <- array(NA, dim = c(n, B, 3))

> w[,,1:2] <- sample(c(0, 1), size = n*B*2, replace = TRUE)

> w[,,3] <- iris$Sepal.Length > 4 & iris$Sepal.Width > 2 &

+ iris$Petal.Length > 4 & iris$Petal.Width > 2

> stability(r1, weights = w)

Artificial data

It is possible to assess the stability for a known data-generating process (DGP) given

by a function that is passed to the data argument. The function must return a an

object of class data.frame containing the simulated observations.

First, a DGP-function must be defined, for example, via the predefined DGP-function
for two-class problems available in the package:

> my_dgp <- function() dgp_twoclass(n = 100, p = 2, noise = 4, rho = 0.2)

Then, a first result must be generated by using the function and the algorithm of
interest:

> res <- ctree(class ~ ., data = my_dgp())

Now, the result and the DGP-function are passed to the stability() function:

> stability(res, data = my_dgp)

C.2 R package Rcdm

Functions to estimate the parameters and the standard errors in the G-DINA model

(see Chapter 3) and to perform DIF detection for the DINA model (see Chapter 4)

are provided in the form of an add-on package for the free open source software R for

statistical computing. The package is called Rcdm and is freely available online under

the terms of the GNU General Public Licence 2 on https://github.com/mphili/cdm.
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C.2.1 Installation

Step 1 Install the packages that are required by Rcdm:

> install.packages(c("Rcpp", "RcppArmadillo", "limSolve", "Matrix"))

Install the packages that are required to run the R commands presented below:

> install.packages(c("strucchange", "pks"))

Step 2 Download the zip-file of the package from https://github.com/mphili/cdm,
unpack it and install it via:

> install.packages("<path-to-directory>", repos = NULL, type = "source")

Alternatively, Rcdm can be installed directly from GitHub via devtools (Wickham
& Chang, 2016):

> # install.packages("devtools")

> library("devtools")

> install_github("mphili/cdm")

C.2.2 Data preparation

For the examples below we use the data from the pks (Heller & Wickelmaier, 2013)

package (see Section 3.3.2 or ?pks::probability for a description).

The data can be loaded into the current R session via:

> data("probability", package = "pks")

Only the responses to the first set of problems are analyzed below:

> items <- sprintf("b1%.2i", 1:12)

> resp <- probability[, items]

The Q-matrix must be defined first. For this example it is given by:
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> qmat <- t(read.table(header = FALSE, text = "

+ 0 1 0 0 1 1 0 0 0 1 1 0

+ 0 0 0 1 0 0 0 0 1 1 1 1

+ 1 0 0 0 1 1 1 1 1 0 1 1

+ 0 0 1 0 0 0 1 1 0 0 0 1

+ "))

> colnames(qmat) <- c("cp", "id", "pb", "un")

> rownames(qmat) <- colnames(resp)

C.2.3 Model fitting

For each new R session, the package must be loaded via:

> library("Rcdm")

The GDINA model can be fitted with the generic gdina() function:

> mGDINA <- gdina(x = resp, q = qmat)

Reduced models can be specified with the rule argument, either jointly for all items:

> mDINA <- gdina(x = resp, q = qmat, rule = "DINA")

> mDINO <- gdina(x = resp, q = qmat, rule = "DINO")

> mACDM <- gdina(x = resp, q = qmat, rule = "ACDM")

or for each item separately:

> itemrules <- c("DINA", "DINA", "DINA", "DINA", "ACDM", "ACDM",

+ "ACDM", "DINO", "ACDM", "DINA", "ACDM", "DINA")

> mSEP <- gdina(x = resp, q = qmat, rule = itemrules)

C.2.4 Model diagnosis

The fitted model and the estimated parameters can be summarized using:

> summary(mGDINA)

Call:

gdina(x = resp, q = qmat)
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Number of items: 12

Number of skills: 4

Number of latent classes: 16

Number of respondents: 504

Number of parameters: 63

Item parameters:

Item Itemno Name Rule Estimate Std.Err

1 b101 1 d_0 G-DINA 0.2026 0.0712

2 b101 1 d_1 G-DINA 0.7329 0.0728

3 b102 2 d_0 G-DINA 0.2846 0.1161

4 b102 2 d_1 G-DINA 0.7154 0.1718

5 b103 3 d_0 G-DINA 0.1043 0.0702

6 b103 3 d_1 G-DINA 0.8562 0.0713

7 b104 4 d_0 G-DINA 0.1231 0.0401

8 b104 4 d_1 G-DINA 0.8396 0.0416

...

For a graphical illustration of the estimates conditional response probabilities type:

> plot(mGDINA)

and for a graphical illustration of the (estimated) latent class distribution:

> barplot(mGDINA)

Wald-type confidence intervals can be computed for the item parameters via:

> confint(mGDINA)

2.5 % 97.5 %

b101.d_0 0.0631 0.3422

b101.d_1 0.5902 0.8756

b102.d_0 0.0570 0.5122

b102.d_1 0.3786 1.0522

b103.d_0 -0.0333 0.2419

b103.d_1 0.7165 0.9959

b104.d_0 0.0445 0.2017

b104.d_1 0.7580 0.9211

...

The item-level fit can be tested as described in (de la Torre & Lee, 2013) via:
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> item_level_fit(mGDINA)

Kj W value df Pr(>W)

b101 1.000000 NA NA NA

b102 1.000000 NA NA NA

b103 1.000000 NA NA NA

b104 1.000000 NA NA NA

b105 2.000000 14.529871 2 0.0006996 ***

b106 2.000000 38.464606 2 4.441e-09 ***

b107 2.000000 7.259821 2 0.0265186 *

b108 2.000000 9.369927 2 0.0092331 **

b109 2.000000 33.230430 2 6.083e-08 ***

b110 2.000000 18.538968 2 9.426e-05 ***

b111 3.000000 7.210987 6 0.3017754

b112 3.000000 0.046081 6 0.9999980

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

C.2.5 Model comparison

Non-nested models can be compared via:

> BIC(mDINA, mDINO, mACDM, mGDINA) # or use AIC() instead

df BIC

mDINA 39 5200.459

mDINO 39 5369.075

mACDM 49 5156.883

mGDINA 63 5243.999

Nested models can be compared using a likelihood ratio test that is implemented in
the anova function:

> anova(mDINA, mACDM, mGDINA)

Analysis of Variance Table

Npar logLik AIC BIC Df Deviance Pr(>Chi)

m1 39 -2478.9 5035.8 5200.5

m2 49 -2426.0 4950.0 5156.9 10 105.8 <2e-16 ***

m3 63 -2426.0 4978.0 5244.0 14 0.0 1

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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C.2.6 DIF detection

To test an item for DIF using the Wald test (only implemented for the DINA rule):

> mR <- update(mDINA, x = resp[probability$sex == "m",])

> mF <- update(mDINA, x = resp[probability$sex == "f",])

> difwald(mR, mF, item = 1)

Wald-test for DIF detection

data: objR, objF

Wj = 0.013466, df = 2, p-value = 0.9933

To test an item for DIF using the LM-test based on strucchange (Zeileis et al., 2002):

> difscore(mDINA, z = probability$sex, item = 1)

M-fluctuation test

data: obj

f(efp) = 1.5877, p-value = 0.4521

C.3 Rasch tree example

The following R code can be used to reproduce the example of the Rasch tree.

> library("partykit") # install.packages("partykit")

> library("psychotree") # install.packages("psychotree")

The SPISA data can be loaded into the current R session via (more information on the
data set is available via ?SPISA):

> data("SPISA")

The Rasch tree can be generated for the items 19 to 27 of the economy domain and
plotted via:

> SPISA_eco <- SPISA

> SPISA_eco$spisa <- SPISA_eco$spisa[,19:27]

> m <- raschtree(spisa ~ ., data = SPISA_eco)

> plot(m)
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